
DASH-IF implementation guidelines: restricted
timing model

https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html

GitHub
Inline In Spec

DASH Industry Forum

Table of Contents

Commit Snapshot, 19 May 2020

This version:

Issue Tracking:

Editors:

1 Purpose

2 Interpretation

3 Disclaimer

4 DASH and related standards
4.1 Structure of a DASH presentation
4.2 Terminology cross-reference across standards
4.3 Terminology choices in this document

5 Goal of the interoperable timing model

6 MPD timeline

7 Presentation timing characteristics

8 Period timing
8.1 First and last period timing in static presentations
8.2 First and last period timing in dynamic presentations

9 Representation timing
9.1 Sample timeline
9.2 Referencing media segments
9.2.1 Necessary segment references in static presentations
9.2.2 Necessary segment references in dynamic presentations
9.2.3 Removal of unnecessary segment references

9.3 Alignment of periods and representations

10 Clock drift is forbidden

https://dashif.org/
https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html
https://github.com/Dash-Industry-Forum/Guidelines-TimingModel/issues

10.1 Workarounds for clock drift

11 Media segments

12 Period connectivity
12.1 Segment reference duplication during connected period transitions
12.2 Period continuity

13 Dynamic presentations
13.1 Clock synchronization
13.2 Leap seconds
13.3 Availability
13.4 Time shift buffer
13.5 Presentation delay
13.6 MPD updates
13.6.1 MPD snapshot validity
13.6.1.1 In-band MPD validity events

13.6.2 Adding content to the MPD
13.6.3 Removing content from the MPD
13.6.4 End of live content

13.7 MPD refreshes
13.7.1 Conditional MPD downloads

14 Segment loss handling

15 Timing of stand-alone IMSC1 and WebVTT text files

16 Forbidden techniques

17 Examples
17.1 Offer content with imperfectly aligned tracks
17.2 Split a period
17.3 Change the default_KID

18 Segment addressing modes
18.1 Indexed addressing
18.2 Structure of the index segment
18.2.1 Moving the period start point (indexed addressing)

18.3 Explicit addressing
18.3.1 Moving the period start point (explicit addressing)

18.4 Simple addressing
18.4.1 Inaccuracy in media segment timing when using simple addressing
18.4.2 Moving the period start point (simple addressing)
18.4.3 Converting simple addressing to explicit addressing

19 Large timescales and time values

20 Representing durations in XML

Conformance

Index
Terms defined by this specification

References

The guidelines defined in this document support the creation of interoperable services for high-quality video
distribution based on MPEG-DASH and related standards. These guidelines are provided in order to address
DASH-IF members' needs and industry best practices. The guidelines support the implementation of conforming
service offerings as well as DASH client implementations.

The restricted timing model constrains the ordinary timing model defined in [DASH] primarily by disallowing gaps in
presentations, thereby increasing the compatibility of DASH services with devices that do not have robust support for
playback of content with gaps.

This timing model also provides editorial flexibility for the presentation author by allowing new periods to be started
at any point. This is achieved by:

In addition to defining the constraints for a restricted timing model, this document attempts to explain and illustrate
many DASH timing concepts that often cause confusion, without constraining them further than already done by
DASH-IF general guidelines, [DASH] or [CMAF].

While alternative interpretations may be equally valid in terms of standards conformance, services and clients
created following the guidelines defined in this document can be expected to exhibit highly interoperable behavior
between different implementations.

This part of the DASH-IF implementation guidelines is published as a stand-alone document for editorial reasons.
Refer to the master document to understand the context in which this document should be viewed.

Requirements in this document describe service and client behaviors that DASH-IF considers interoperable.

If a service provider follows these requirements in a published DASH service, the published DASH service is likely
to experience successful playback on a wide variety of clients and exhibit graceful degradation when a client does
not support all features used by the service.

If a client implementer follows the client-oriented requirements described in this document, the DASH client will
play content conforming to this document provided that the client device media platform supports all features used by
a particular DASH service (e.g. the codecs and DRM systems).

This document uses statements of fact when describing normative requirements defined in referenced specifications
such as [DASH] and [CMAF]. References are typically provided to indicate where the requirements are defined.

[RFC2119] statements (e.g. "SHALL", "SHOULD" and "MAY") are used when this document defines a new
requirement or further constrains a requirement from a referenced document.

Normative References
Informative References

Issues Index

1. Purpose

1. Strictly defining the period boundary rules on the DASH service side.

2. Permitting fleixble behavior from clients in how they transition between periods (to account for implementation
limitations).

Note: Some alternative timing model interpretations significantly restrict the ability of content authors to define
period boundaries.

2. Interpretation

There is no strict backward compatibility with previous versions - best practices change over time and what was
once considered sensible may be replaced by a superior approach later on. Therefore, clients and services that
were conforming to version N of this document are not guaranteed to conform to version N+1.

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of
intellectual property rights, including patents and patent applications owned or controlled by any of the authors or
developers of this document. No patent license, either implied or express, is granted to you by this document.
DASH-IF has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights
and obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the
DASH-IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable
law, this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties.
Those third party documents and technologies may be subject to third party rules and licensing terms. No intellectual
property license, either implied or express, to any third party material is granted to you by this document or DASH-IF.
DASH-IF makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance material is provided, are
only published as a candidate technologies, and may be removed if no test material is provided before releasing a
new version of this guidelines document. For the availability of test material, please check http://www.dashif.org.

DASH (dynamic adaptive streaming over HTTP) [DASH] is a technology for adaptive media delivery. Initially
published by ISO/IEC in April 2012, it has been continually updated, with the 4th edition published in 2020.

CMAF (common media application format) [CMAF] is a media container format based on ISO Base Media File
Format [ISOBMFF]. It defines data structures for media delivery compatible with DASH and other similar
technologies such as [HLS]. Initially published by ISO/IEC in 2018, it has been updated in 2019 with the publishing of
the 2nd edition.

This document is based on the 4th edition DASH [DASH] and 2nd edition CMAF [CMAF] specifications.

DASH together with related standards and specifications is the foundation for an ecosystem of services and clients
that work together to enable audio/video/text and related content to be presented to end-users.

EXAMPLE 1
Statement of fact:

New or more constrained requirement:

A DASH presentation is a sequence of consecutive non-overlapping periods [DASH].

Segments SHALL NOT use the MPEG-TS container format.

3. Disclaimer

4. DASH and related standards

Figure 1 This document connects DASH with international standards and industry specifications.

[DASH] defines a highly flexible set of building blocks that needs to be constrained to ensure interoperable behavior
in common scenarios. The necessary media container constraints are largely defined by [CMAF] and
[DASH-CMAF]. This document defines further constraints to limit DASH features to those that are considered
appropriate for use in interoperable clients and services.

Clients consuming DASH content will need to interact with the host device’s media platform. The guidelines in this
document assume that the media platform implements APIs that are equivalent to Media Source Extensions [media-
source] and Encrypted Media Extensions [encrypted-media]. API level compatibility is not required but equivalent
features are expected.

This document was generated in close coordination with [DVB-DASH]. The features are aligned to the extent
considered reasonable. The tools and features are aligned to the extent considered reasonable. In addition, DASH-
IF worked closely with ATSC to develop a DASH profile for ATSC3.0 for broadcast distribution [ATSC3].

[DASH] specifies the structure of a DASH presentation, which consists primarily of:

Figure 2 Relationships of primary DASH data structures and the standards they are defined in.

The MPD is an XML file that follows a schema defined in [DASH]. Various 3rd party extension points are defined in
the XML schema. This document defines some extensions, as do other industry specifications.

[DASH] defines two data container formats, one based on [ISOBMFF] and the other [MPEG2TS]. However, only the
former is used in modern solutions. This document only supports services using the [ISOBMFF] container format.

[CMAF] is a constrained media format based on [ISOBMFF], specifically designed for adaptive streaming. This
document requires the use of [CMAF] compatible data containers. The requirements for the usage of CMAF with
DASH are defined by [DASH-CMAF].

4.1. Structure of a DASH presentation

1. The manifest or MPD, which describes the content and how it can be accessed.

2. Data containers that clients will download during playback of a presentation in order to obtain media samples.

The data container format defines the physical structure of the following components of a presentation:

Different documents often use different terms to refer to the same structural components of DASH presentations. A
quick cross-reference of terms commonly found causing confusion is presented here:

[DASH] [CMAF] [ISOBMFF]

(media) segment, subsegment CMAF segment, CMAF fragment

initialization segment CMAF header

index segment, segment index segment index box (sidx)

Figure 3 Cross-reference of closely related terms in different standards.

This document is intended to be a set of guidelines easily understood by solution designers and developers. In the
interest of ease of understanding, some important adjustments in terminology are made compared to the underlying
standards, described here.

[DASH] has the concept of "segment" (URL-addressable media object) and "subsegment" (byte range of URL-
addressable media object), whereas [CMAF] does not make such a distinction. This document uses [CMAF]
terminology, with the term "segment" in this document being equivalent to "CMAF segment". The term "segment" in
this document may be equivalent to either "segment" or "subsegment" in [DASH], depending on the addressing
mode used.

This document’s concept of the MPD timeline is not directly expressed in [DASH]. To improve understandability of
the timing model, this document splits the DASH concept of "presentation timeline" ([DASH] 7.2.1) into two separate
concepts: the aggregated component (MPD timeline) and the representation specific component (sample timeline).
These concepts are distinct but mutually connected via metadata in the MPD.

[DASH] uses "representation" to refer to a set of files and associated metadata, with the same "representation"
possibly used in different parts of a DASH presentation and/or in different presentations. This document uses
representation to refer to an individual instance of a [DASH] "representation" - a set of data in an MPD that
references some files containing media samples. Using the same files in two places effecticely means using two
representations, whereas in [DASH] terminology it would be valid to call that a single representation used with
individual conditions/caveats that apply to each usage. The deviation in terminology is intentional as it simplifies
understanding and avoids having to juggle the two concepts (as the "shared" view is typically not relevant).

Note: The relationship to [CMAF] is constrained to the container format, as primarily expressed by [DASH-CMAF
]. In particular, there is no requirement to conform to [CMAF] media profiles.

1. Each representation contains an initialization segment.

2. Each representation contains any number of media segments.

3. Some representations may contain an index segment, depending on the addressing mode used.

Note: HLS (HTTP Live Streaming) [HLS] is an adaptive media delivery technology similar to DASH that also
supports CMAF. Under certain constraints, content conforming to CMAF can be delivered to clients using both
DASH and HLS.

4.2. Terminology cross-reference across standards

4.3. Terminology choices in this document

The purpose of this document is to give a holistic overview of DASH presentation timing and segment addressing,
explaining the existing building blocks and rules defined by [DASH] and adding further constraints to achieve greater
interoperability between DASH services and clients.

[DASH] 4.3 and 7.2.1 define the high-level structure and timing concepts of DASH, with [DASH-CMAF] further
relating them to [CMAF] concepts. The DASH-IF implementation guidelines allow considerably less flexibility in
timing than provided by [DASH], constraining services to a specific set of reasonably flexible behaviors that are
highly interoperable with modern client platforms.

This document defines an interoperable timing model and documents segment addressing logic suitable for
interoperable use cases. Alternative interpretations of DASH timing may be equally valid from a standards
conformance viewpoint.

The MPD defines the MPD timeline of a DASH presentation, which serves as the baseline for all scheduling
decisions made during playback and establishes the relative timing of periods and media segments. The MPD
timeline informs DASH clients on when it can download and present which media segments. The contents of an
MPD are a promise by a DASH service to make specific media segments available during specific time spans
described by the MPD timeline.

Values on the MPD timeline are all ultimately relative to the zero point of the MPD timeline, though possibly through
several layers of indirection (e.g. period A is relative to period B, which is relative to the zero point).

The ultimate purpose of the MPD is to enable the client to obtain media samples for playback. The MPD also
provides the information required for a DASH client to dynamically switch between different bitrates of the same
content (in different representations) to adapt to changing network conditions.

The following MPD elements are most relevant to locating and scheduling the media samples:

5. Goal of the interoperable timing model

6. MPD timeline

1. The MPD describes consecutive periods which map data onto the MPD timeline.

2. Each period describes of one or more representations, each of which provides media samples inside a
sequence of media segments located via segment references. Representations contain independent sample
timelines that are mapped to the time span on the MPD timeline that belongs to the period.

3. Representations within a period are grouped into adaptation sets, which associate related representations and
decorate them with metadata.

Figure 4 The primary contents of a presentation, described by an MPD.

There exist two types of DASH presentations, indicated by MPD@type [DASH]:

In a dynamic presentation, the zero point of the MPD timeline is the mapped to the point in wall clock time indicated
by the effective availability start time, which is formed by taking MPD@availabilityStartTime and applying any
LeapSecondInformation offset ([DASH] 5.3.9.5 and 5.13). This allows a wall clock time to be associated with each
media segment, indicating the moment the media segment is intended to be presented. The zero point of the MPD
timeline will move when leap seconds occur ([DASH] 5.13). See also § 13.2 Leap seconds.

MPD@mediaPresentationDuration MAY be present in an MPD. If present, it SHALL accurately match the duration
between the zero point on the MPD timeline and the end of the last period, including the duration of any XLink
periods. Clients SHALL calculate the total duration of a static presentation by adding up the durations of each period
and SHALL NOT rely on the presence of MPD@mediaPresentationDuration.

An MPD defines an ordered list of one or more consecutive non-overlapping periods ([DASH] 5.3.2). A period is
both a time span on the MPD timeline and a definition of the data to be presented during this time span. Period
timing is relative to the zero point of the MPD timeline, though often indirectly (being relative to the previous period).

7. Presentation timing characteristics

In a a static presentation (MPD@type="static") any media segment may be presented at any time. The DASH
client is in complete control over what content is presented when and the entire presentation is available at any
time.

In a dynamic presentation (MPD@type="dynamic") the MPD timeline is mapped to wall clock time, with each
media segment on the MPD timeline intended to be presented at a specific moment in time (with some client-
chosen time shift allowed).

Furthermore, media segments may become available and cease to be available with the passage of time.

The MPD may change over time, enabling the structure of the presentation to change over time (e.g. when
a new title in the presentation is offered with a different set of languages).

Note: This calculation is necessary because the durations of XLink periods can only be known after the XLink is
resolved. Therefore it is impossible to always determine the total MPD duration on the service side as only the
client is guaranteed to have access to all the required knowledge (the contents of the XLink periods).

8. Period timing

Figure 5 An MPD defines a collection of consecutive non-overlapping periods.

The start of a period is specified either explicitly as an offset from the MPD timeline zero point (Period@start) or
implicitly by the end of the previous period ([DASH] 5.3.2). The duration of a period is specified either explicitly with
Period@duration or implicitly by the start point of the next period ([DASH] 5.3.2). See also § 8.1 First and last period
timing in static presentations and § 8.2 First and last period timing in dynamic presentations.

Periods are self-contained - a service SHALL NOT require a client to know the contents of another period in order to
correctly present a period. Knowledge of the contents of different periods MAY be used by a client to achieve
seamless period transitions, especially when working with period-connected representations.

Common reasons for defining multiple periods are:

A period SHALL NOT have a duration of zero. MPD generators are expected to remove any periods that are, for any
reason, assigned a duration of zero. This might happen, for example, due to ad insertion logic deciding not to insert
any ad or due to a packager not receiving any content to insert into the period. Clients SHALL ignore periods with a
duration of zero.

In a static presentation, the first period SHALL start at the zero point of the MPD timeline (with a Period@start value
of 0 seconds).

In a static presentation, the last period SHALL have a Period@duration.

In a dynamic presentation, the first period SHALL start at or after the zero point of the MPD timeline (with a
Period@start value of 0 seconds or greater).

Assembling a presentation from multiple self-contained pieces of content.

Inserting ads in the middle of existing content and/or replacing spans of existing content with ads.

Adding/removing certain representations as the nature of the content changes (e.g. a new title starts with a
different set of offered languages).

Updating period-scoped metadata (e.g. codec configuration or DRM signaling).

EXAMPLE 2
The below MPD consists of two 20-second periods. The duration of the first period is calculated using the start
point of the second period. The total duration of the presentation is 40 seconds.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
 <Period>
 ...
 </Period>
 <Period start="PT20S" duration="PT20S">
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

8.1. First and last period timing in static presentations

8.2. First and last period timing in dynamic presentations

In a dynamic presentation, the last period MAY have a Period@duration, in which case it has a fixed duration. If
without Period@duration, the last period in a dynamic presentation has an unlimited duration (that may later be
shortened by an MPD update).

Representations provide the content for periods. A representation is a sequence of media segments, an
initialization segment, an optional index segment and related metadata ([DASH] 5.3.1 and 5.3.5).

The MPD describes each representation using a Representation element. For each representation, the MPD
defines a set of segment references to the media segments and metadata describing the media samples
provided by the representation. The segment references and much of the metadata are shared by all representations
in the same adaptation set.

Each representation belongs to exactly one adaptation set and exactly one period, although a representation may be
connected with a representation in another period.

Note: A period with an unlimited duration can be converted to fixed duration by an MPD update, so even a
nominally unlimited duration is effectively constrained by the MPD validity duration of the current MPD snapshot.

EXAMPLE 3
The below MPD consists of a 20-second period followed by a period of unlimited duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="dynamic">
 <Period duration="PT20S">
 ...
 </Period>
 <Period>
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

9. Representation timing

The samples within a representation exist on a linear sample timeline defined by the encoder that creates the
samples. Sample timelines are mapped onto the MPD timeline by metadata stored in or referenced by the MPD ([D
ASH] 7.3.2).

Figure 6 A sample timeline is mapped onto the MPD timeline based on parameters defined in the MPD, relating the media
samples provided by a representation to the portion of the MPD timeline covered by the period that references the

representation. The sample timelines extend further beyond the range of the period (full extents not illustrated).

The sample timeline does not determine what samples are presented. It merely connects the timing of the
representation to the MPD timeline and allows the correct media segments to be identified when a DASH client
makes scheduling decisions driven by the MPD timeline. The exact connection between media segments and the
sample timeline is defined by the addressing mode.

EXAMPLE 4
The below MPD consists of a single 20-second period with three video, one audio and one text representation.
Each representations supplies the period with 20 seconds of media samples.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
 <Period duration="PT20S">
 <AdaptationSet>
 <Representation id="1" mimeType="video/mp4" codecs="avc1.64001f" bandwidth="386437" />
 <Representation id="2" mimeType="video/mp4" codecs="avc1.640028" bandwidth="1117074" />
 <Representation id="3" mimeType="video/mp4" codecs="avc1.640033" bandwidth="2723012" />
 </AdaptationSet>
 <AdaptationSet lang="en">
 <Representation id="4" mimeType="audio/mp4" codecs="mp4a.40.29" bandwidth="131351" />
 </AdaptationSet>
 <AdaptationSet lang="en-US">
 <Representation id="5" mimeType="application/mp4" codecs="wvtt" bandwidth="428" />
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

9.1. Sample timeline

The same sample timeline is shared by all representations in the same adaptation set [DASH-CMAF].
Representations in different adaptation sets MAY use different sample timelines.

A sample timeline is linear - encoders are expected to use an appropriate timescale and sufficiently large timestamp
fields to avoid any wrap-around. If wrap-around does occur, a new period must be started in order to establish a new
sample timeline.

The sample timeline is formed after applying any [ISOBMFF] edit lists ([DASH] 7.3.2).

A sample timeline is measured in timescale units defined as a number of units per second ([DASH] 5.3.9.2 and
5.3.9.6). This value (the timescale) SHALL be present in the MPD as SegmentTemplate@timescale or
SegmentBase@timescale (depending on the addressing mode).

Figure 7 @presentationTimeOffset is the key component in establishing the relationship between the MPD timeline and a
sample timeline.

The zero point of a sample timeline may be at the start of the period or at any earlier point. The point on the sample
timeline indicated by @presentationTimeOffset is equivalent to the period start point on the MPD timeline ([DASH]
5.3.9.2). The value is provided by SegmentTemplate@presentationTimeOffset or
SegmentBase@presentationTimeOffset, depending on the addressing mode, and has a default value of 0 timescale
units.

Each segment reference addresses a media segment that corresponds to a specific time span on the sample
timeline.

The exact mechanism used to define segment references depends on the addressing mode used by the
representation. All representations in the same adaptation set SHALL use the same addressing mode.

The sequence of segment references provided for a representation SHALL NOT leave gaps between
media segments or define overlapping media segments.

The portion of the period that a representation must provide media segments for depends on the type of the
presentation, with the requirements for each type described below.

In a static presentation, a representation SHALL provide enough media segments to cover the entire time span of

Note: While optional in [DASH], the presence of the @timescale attribute is required by the interoperable timing
model because the default value of 1 is unlikely to match any real-world content and is far more likely to indicate
an unintentional content authoring error.

Note: To transform a sample timeline position SampleTime to an MPD timeline position, use the formula MpdTime
= Period@start + (SampleTime - @presentationTimeOffset) / @timescale.

9.2. Referencing media segments

9.2.1. Necessary segment references in static presentations

the period.

Figure 8 In a static presentation, the entire period must be covered with media segments.

In a dynamic presentation, a representation SHALL provide enough media segments to cover the time span of the
period that intersects with the time shift buffer at any point during the MPD validity duration.

Figure 9 In a dynamic presentation, the time shift buffer and MPD validity duration determine the set of required segment
references for each representation. Media segments filled with gray need not be referenced due to falling outside the time shift

buffer in its maximum extents during the MPD validity duration, despite falling within the bounds of a period.

9.2.2. Necessary segment references in dynamic presentations

It is a valid and common situation that a media segment is required to be referenced but is not yet available. See
also § 13.3 Availability.

An unnecessary segment reference is one that is not defined as required by § 9.2.1 Necessary segment
references in static presentations or § 9.2.2 Necessary segment references in dynamic presentations.

In a static presentation, the MPD SHALL NOT contain unnecessary segment references, except for representations
that use indexed addressing in which case such segment references MAY be present.

In a dynamic presentation, the MPD SHALL NOT contain unnecessary segment references except when any of the
following applies, in which case an unnecessary segment reference MAY be present:

Segment start points and segment end points do not need to be aligned with period start/end points ([DASH] 7.2.1).
The general expectation is that only the content that falls within the period time span is presented by DASH clients.
Allowing for overflow outside this time span ensures that periods can be easily started and ended at arbitrary
positions on the MPD timeline without leaving gaps. Starting and ending periods is an editorial decision that is
typically independent of the technical structure of the contents of the period.

Figure 10 Media segments and samples need not align with period boundaries. Some samples may be entirely outside a
period (marked gray) and some may overlap the period boundary (yellow).

Clients SHALL NOT present any samples from media segments that are entirely outside the period, even if such
media segments are referenced.

If a media segment overlaps a period boundary, clients SHOULD NOT present the samples that lie outside the
period and SHOULD present the samples that lie either partially or entirely within the period.

Note: In the above example, the second period is shown as extending beyond the end of the MPD validity
duration (e.g. because it is of unlimited length), which effectively increases the time shift buffer to the end of the
MPD validity duration. If the second period were shorter, the range of required segment references would
terminate with the end of the period.

9.2.3. Removal of unnecessary segment references

1. The segment reference is for future content and will eventually become necessary.

2. The segment reference is defined via indexed addressing.

3. The segment reference is defined by an <S> element that uses S@r to define multiple segment references, some
of which are necessary.

4. Removal of the segment reference is not allowed by content removal constraints.

9.3. Alignment of periods and representations

As perfect alignment between sample and period boundaries cannot be expected, clients MAY incur small time shift
in either direction (within extents permitted by this document) when playing a dynamic presentation and transitioning
in/out of a period where the sample and period boundaries are not aligned.

Some encoders experience clock drift - they do not produce exactly 1 second worth of output per 1 second of input,
either stretching or compressing the sample timeline with respect to the MPD timeline.

Figure 11 Comparison of an encoder correctly tracking wall clock time (blue) and an encoder with a clock that runs 0.8% too
slowly (yellow), leading it to producing fewer seconds of content than expected (the correct amount of content has been
temporally compressed by the encoder to fit into a smaller number of seconds). A DASH packager cannot use the yellow

encoder’s output as-is or it would violate the DASH timing model, which requires services to track wall clock time, and potentially
lead to track de-synchronization.

Clock drift not only causes timing model violations when an insufficient amount of data is produced but also leads to
de-synchronization of content in tracks encoded based on different clocks. [CMAF] 6.3 and 6.6.8 require tracks to be
synchronized.

To detect clock drift, one can check for the presence/absence of data near the current wall clock time. If data from
now or the immediate past is absent, possibly the encoder has a slow clock. If data from the future is present,
possibly the encoder has a fast clock. Furthermore, gradual de-synchronization of content in different tracks over a
long play duration is a clear sign of clock drift on one or more of the involved encoders.

It would be unreasonable to expect DASH clients to counteract clock drift by performing their own timeline stretching
or compressing during playback, even if provided with the information about clock differences. DASH clients are
based on very limited media platform APIs that typically lack the capability for any such compensation. Therefore, a
DASH service SHALL NOT publish content that suffers from clock drift.

The solution is to adjust the encoder so that it correctly tracks wall clock time, e.g. by performing regular small
adjustments to the encoder clock to counteract any "natural" drift it may be experiencing. The exact implementation
depends on the encoder timing logic and is out of scope of this document.

Note: In the end, which samples are presented is entirely up to the client. It may sometimes be impractical to
present media segments only partially, depending on the capabilities of the client platform, the type of media
samples involved and any dependencies between samples.

10. Clock drift is forbidden

Note: A lack of data at the current wall clock time or in the past is typically a violation of the timing model, whereas
there is no explicit restriction on providing data in the future.

10.1. Workarounds for clock drift

If the encoder cannot be adjusted to not suffer from clock drift, the only remaining option is to post-process its output
to bring the presentation into conformance with the timing model. The facilities available to the packager are likely
less powerful than those available to the encoder - it is unlikely that re-encoding/re-timing the media samples is
practical in the packager. Furthermore, this type of adjustment will not eliminate track de-synchronization that will be
present unless the clocks used to encode all tracks drift at the same rate.

DASH packagers are responsible for generating DASH presentations that conform to targeted standards or
specifications and cannot assume perfect encoder implementations. It is a fact that some encoders suffer from clock
drift. DASH packagers SHOULD implement workarounds to ensure the presentation is conforming to targeted
standards and specifications. This may require some some unavoidable disruption of the end-user experience.

The following are examples of approaches a DASH packager could use to bring content from an encoder suffering
clock drift into conformance:

Such after-the-fact corrective actions can be disruptive and only serve as a backstop to prevent complete playback
failure cased by timing model violations. Such workarounds might be satisfactory when correcting for very small drift
rates, with any disruptions being relatively rare.

A media segment is an HTTP-addressable data structure that contains media samples, referenced by an MPD via
a segment reference. The structure of a media segment is that of a CMAF segment consisting of one or more CMAF
fragments [DASH-CMAF]. Different media segments may be different byte ranges accessed on the same URL.

The segment-related terminology in this document is aligned with [CMAF] rather than [DASH]. See
§ 4.3 Terminology choices in this document to better understand the differences.

Media segments contain one or more consecutive media samples and consecutive media segments in the same
representation contain consecutive media samples [CMAF].

A media segment contains the media samples that exactly match the time span on the sample timeline associated
with a media segment via a segment reference ([DASH] 7.2.1 and [DASH-CMAF]), except when using simple
addressing in which case a certain amount of inaccuracy may be present as defined in § 18.4.1 Inaccuracy in media
segment timing when using simple addressing. How segment references are defined depends on the addressing
mode.

All timing-related clauses in this document refer to the nominal timing described in the MPD unless
otherwise noted. DASH clients are expected to operate with nominal times in playback logic, even if

the real values differ due to permitted amounts of inaccuracy.

The segment start point is the point on the MPD timeline where the media segment starts according to the
segment reference obtained from the MPD. The segment end point is the segment start point plus the media
segment duration defined by the segment reference.

1. Drop a span of content if input is produced faster than real-time.

2. Insert regular padding content if input is produced slower than real-time. This padding can take different forms:

Silence or a blank picture.

Repeating frames.

Insertion of short-duration periods where the affected representations are not present.

11. Media segments

Media segments in different representations of the same adaptation set are aligned ([CMAF] 7.3.4 and [DASH-CMA
F]). This means they contain media samples for the same time span on the sample timeline. This is true even if using
simple addressing with inaccurate media segment timing. That is, not only is the nominal timing aligned but so is the
true media sample timing inside the media segments.

In certain circumstances content may be offered such that the contents of one adaptation set are technically
compatible with the contents an adaptation set in a previous period ([DASH] 5.3.2.4). Such adaptation sets are
period-connected.

The main characteristic of connectivity is that initialization segments of representations with matching @id in period-
connected adaptation sets are functionally equivalent ([DASH] 5.3.2.4). That is, the initialization segment of a
representation in one period-connected adaptation set can be used to initialize playback of a representation with
matching @id in the other period-connected adaptation set. Connectivity is typically achieved by using the same
encoder to encode the content of multiple periods using the same settings.

In encrypted content the content key identifier default_KID is part of the initialization segment. Using
a different content key breaks period connectivity that would otherwise exist due to matching codec

configuration.

Adaptation sets SHALL NOT be signaled as period-connected if the set of representations in them is different, even
if all shared representations remain compatible.

An MPD MAY contain unrelated periods between periods that contain period-connected adaptation sets.Period
connectivity MAY be chained across any number of periods.

Period-connected adaptation sets content SHOULD be signaled in the MPD as period-connected. This signaling
helps clients ensure seamless playback across period transitions.

Figure 12 Adaptation sets can be signaled as period-connected, enabling client optimizations. Arrows on diagram indicate
direction of connectivity reference (from future to past), with the implied message being "the client can use the same decoder

configuration it used where the arrow points to".

Note: In [DASH] terminology, the segment start point is often equivalent to "earliest presentation time" of the
media segment. However, this relation does not always hold true as "earliest presentation time" is defined in
terms of media sample timing which is affected by the inaccuracy allowed under simple addressing. In contrast,
the segment start point is always the nominal start point and is not affected by any potential timing inaccuracy.

12. Period connectivity

Note: The above constraint removes some ambiguity from the [DASH] definition, which does not explicitly state
whether it is allowed to only have a subset of representations that is connected. GitHub #387

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/387

The sample timelines of representations in period-connected adaptation sets MAY be discontinuous between two
periods (e.g. due to encoder clock wrap-around or skipping some content as a result of editorial decisions). See
also § 12.2 Period continuity.

The following signaling in the MPD indicates that two adaptation sets are period-connected across two periods ([DA
SH] 5.3.2.4):

The period-connected adaptation sets have the same @id and the same set of Representation@id values ([DASH]
5.3.2.4).

As a period may start and/or end in the middle of a media segment, the same media segment may simultaneously
be referenced by two period-connected adaptation sets, with one part of it scheduled for playback during the first
period and the other part during the second period. This is likely to be the case when no sample timeline
discontinuity is introduced by the transition.

Figure 13 The same media segment will often exist in two periods at a period-connected transition. On the diagram, this is
segment 4.

Clients SHOULD NOT present a media segment twice when it occurs on both sides of a period transition in a
period-connected adaptation set.

Clients SHOULD ensure seamless playback of period-connected adaptation sets in consecutive periods. Clients
unable to ensure seamless playback MAY incur some amount of time shift at the period transition point provided that
the resulting time shift is permitted by the timing model.

In addition to period connectivity, [DASH] 5.3.2.4 defines period continuity. Continuity is a special case of period
connectivity that indicates no timeline discontinuity is present at the transition point between the media samples of
the two continuous periods. Under continuity conditions, the client is expected to be able to continue seamless
playback by merely appending media segments from the new period, without any reconfiguration at the period
boundary.

Continuity SHALL NOT be signaled if the first/last sample in the media segment on the period boundary does not
exactly start/end on the period boundary. This cannot be expected to be generally true, as period boundaries are

The adaptation set in the second period has a supplemental property descriptor with:

@schemeIdUri set to urn:mpeg:dash:period-connectivity:2015.

@value set to the Period@id of the first period.

12.1. Segment reference duplication during connected period transitions

Note: The exact mechanism that ensures seamless playback depends on client capabilities and will be
implementation-specific. Any shared media segment overlapping the period boundary may need to be detected
and deduplicated to avoid presenting it twice.

12.2. Period continuity

often an editorial decision independent of the media segment and sample layout.

Period continuity MAY be signaled in the MPD when the above condition is met, in which case period connectivity
SHALL NOT be simultaneously signaled on the same representation. Continuity implies connectivity ([DASH]
5.3.2.4).

The signaling of period continuity is the same as for period connectivity, except that the value to use for
@schemeIdUri is urn:mpeg:dash:period-continuity:2015 ([DASH] 5.3.2.4).

Clients MAY take advantage of any platform-specific optimizations for seamless playback that knowledge of period
continuity enables; beyond that, clients SHALL treat continuity the same as connectivity.

The requirements in this section and its subsections only apply to dynamic presentations.

The following factors primarily differentiate dynamic presentations from static presentations:

Note: This further constrains usage of continuity compared to [DASH], which does not require the boundary
samples to actually be the first/last sample in the media segment. However, that interpretation leaves room for
incompatible implementations depending on how the client handles deduplication of duplicate segments at
period boundaries (which would be required under the rules of the interoperable timing model in order to not
leave a gap).

13. Dynamic presentations

1. The media segments of a dynamic presentation may become available over time and cease to be available
after the passage of time. That is, not all segments are necessarily available at all times.

2. Playback of a dynamic presentation is synchronized to a wall clock (with some amount of client-chosen time shift
allowed).

3. The MPD of a dynamic presentation may change over time, with each snapshot having a limited MPD validity
duration and clients regularly downloading new snapshots of the MPD.

During playback of dynamic presentations, a wall wall clock is used as the timing reference for DASH client
decisions. This is a synchronized clock shared by the DASH client and service. With the exception of clock
adjustments performed by the DASH client for synchronization purposes, the time indicated by the wall clock
increases at real time speed (1 second per second), regardless of the duration of content that has been presented
by the DASH client.

It is critical to synchronize the clocks of the DASH client and service when using a dynamic presentation because the
MPD timeline of a dynamic presentation is mapped to wall clock time and many playback decisions are clock driven
and assume a common understanding of time by the DASH client and service.

The time indicated by the wall clock does not necessarily need to match some universal standard as long as the
DASH client and service are mutually synchronized.

Clock synchronization mechanisms are described by UTCTiming elements in the MPD ([DASH] 5.8.4.11).

The MPD of a dynamic presentation SHALL include at least one UTCTiming element that defines a clock
synchronization mechanism. If multiple UTCTiming elements are listed, their order determines the order of preference
[DASH].

A client presenting a dynamic presentation SHALL synchronize its local clock according to the UTCTiming elements
in the MPD and SHALL emit a warning or error to application developers when clock synchronization fails, no
UTCTiming elements are defined or none of the referenced clock synchronization mechanisms are supported by the
client.

A DASH client SHALL NOT use a synchronization method that is not listed in the MPD unless explicitly instructed to
do so by the application developer.

EXAMPLE 5
The below MPD consists of two 300-second periods. The duration of the first period is calculated using the start
point of the second period. The total duration of the presentation is 600 seconds.

The dynamic presentation was intended to be presented starting at 09:35 UTC on December 2, 2017, allowing
for up to 400 seconds of time shift by the DASH client. By the absence of MPD@minimumUpdatePeriod, the MPD
indicates that its contents will never change.

The absence of an LeapSecondInformation element indicates the service provider does not expect the service
to remain accessible for long enough to encounter a leap second.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="dynamic"
 availabilityStartTime="2017-12-02T09:35:00Z" timeShiftBufferDepth="PT400S">
 <Period>
 ...
 </Period>
 <Period start="PT300S" duration="PT300S">
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

The requirements in this document mandate the removal of expired content and expired MPDs. Given the 2017
date marked in the MPD, this example is obviously expired in its entirety. The necessary removal of expired
content from within the MPD has been omitted for purposes of illustration.

13.1. Clock synchronization

The use of a "default time source" by DASH clients is not allowed because this often obscures
interoperability problems and introduces inconsistent behavior due to device clock differences.

The set of time synchronization mechanisms SHALL be restricted to the following subset of schemes from among
those defined in [DASH] 5.8.5.7:

Dynamic presentations that cross the boundary between December/January or June/July ([LEAP-SECONDS]) need
to correctly represent the effects of leap seconds to DASH clients, which shift the MPD timeline start point. Under the
model defined by [DASH] 5.13, clients are informed of necessary leap second adjustments via the MPD.

The MPD of a dynamic presentations SHALL publish leap second offset information in the MPD, in the form of a
LeapSecondInformation element as defined by [DASH] 5.13, unless the service provider does not intend for the
presentation to remain accessible long enough to encounter a December/January or June/July transition in the UTC
timezone.

Clients SHALL process leap second offset information (and any updates received due to MPD refreshes) in order to
accurately calculate the effective availability start time.

A media segment is available when an HTTP request to acquire the media segment can be started and successfully
performed to completion by a client ([DASH] 3.1.6). During playback of a dynamic presentation, new media
segments continuously become available and stop being available with the passage of time.

An availability window is a time span on the MPD timeline that determines which media segments clients can
expect to be available.

Each adaptation set has its own availability window. Services SHALL NOT define MPD attributes that affect the
availability window on the representation level.

Figure 14 The availability window determines which media segments can be expected to be available, based on where their
segment end point lies.

urn:mpeg:dash:utc:http-xsdate:2014

urn:mpeg:dash:utc:http-iso:2014

urn:mpeg:dash:utc:http-head:2014

urn:mpeg:dash:utc:direct:2014

ISSUE 1 We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services.

13.2. Leap seconds

13.3. Availability

The availability window is calculated as follows:

Media segments that have their segment end point inside or at the end of the availability window are available [DAS
H].

It is the responsibility of the DASH service to ensure that media segments are available to clients
when they are described as available by the MPD [DASH]. Keep in mind that the criterium for
availability is a successful download by clients, not successful publishing from a packager.

Clients MAY at any point attempt to acquire any media segments that the MPD signals as available. Clients SHALL
NOT attempt to acquire media segments that the MPD does not signal as available.

Despite best efforts, DASH services occasionally fail to achieve the availability windows advertised in the MPD. To
ensure robust behavior even in the face of imperfect services, clients SHOULD NOT assume that media segments
described by the MPD as available are available and SHOULD implement appropriate retry/fallback behavior to
account for timing errors by slow-publishing or eagerly-unpublishing services.

The time shift buffer is a time span on the MPD timeline that defines the set of media segments that a client is
allowed to present at the current moment in time according to the wall clock (now).

This is the mechanism by which clients can introduce a time shift (an offset) between wall clock time and the MPD
timeline when presenting dynamic presentations. The time shift is zero when a client is presenting the media
segment at the end point of the time shift buffer. By playing back media segments from further in the past, a positive
time shift is introduced.

The following additional factors further constrain the set of media segments that can be presented at the current time.
These factors often force a client to introduce a time shift:

Note: A DASH service will typically make media segments available some seconds ahead of t=now, depending
on its configuration and latency target. Furthermore, some periods may be entirely prepared in advance and
available at all times (e.g. ads inserted between truly live content).

1. Let now be the current wall clock time according to the wall clock.

2. Let AvailabilityWindowStart be now - MPD@timeShiftBufferDepth.

If MPD@timeShiftBufferDepth is not defined, let AvailabilityWindowStart be the effective availability start
time.

3. Let TotalAvailabilityTimeOffset be the sum of all @availabilityTimeOffset values that apply to the adaptation
set, either via SegmentBase, SegmentTemplate or BaseURL elements ([DASH] 5.3.9.5.3).

4. The availability window is the time span from AvailabilityWindowStart to now + TotalAvailabilityTimeOffset.

Note: [DASH] 4.3 and 5.3.9 define "segment availability time" of a segment as the span of wall clock time during
which that media segment is available. Consequently, the availability window at each moment is approximately
equivalent to the union of "segment availability times" of all available media segments at that moment.

13.4. Time shift buffer

Note: A time shift of 30 seconds means that the client starts presenting a media segment at the moment when its
position on the MPD timeline reaches a distance of 30 seconds from the end of the time shift buffer.

1. § 13.3 Availability - not every media segment in the time shift buffer is guaranteed to be available.

2. § 13.5 Presentation delay - the service may define a delay that forbids the use of a section of the time shift
buffer.

The time shift buffer extends from now - MPD@timeShiftBufferDepth to now. In the absence of
MPD@timeShiftBufferDepth the start of the time shift buffer is the effective availability start time.

Figure 15 Media segments overlapping the time shift buffer may potentially be presented by a client if other constraints do not
forbid it.

Clients MAY present samples from media segments that overlap (either in full or in part) the time shift buffer,
assuming no other constraints forbid it. Clients SHALL NOT present samples from media segments that are entirely
outside the time shift buffer (whether in the past or the future).

The start of the time shift buffer MAY be before the start of the first period. Common reasons for this are:

A dynamic presentation SHALL contain a period that ends at or overlaps the end point of the time shift buffer, except
when reaching the end of live content in which case the last period MAY end before the end of the time shift buffer.

Clients SHALL NOT allow seeking into regions of the time shift buffer that are not covered by periods, regardless of
whether such regions are before or after the periods described by the MPD.

There is a natural conflict between the availability window and the time shift buffer. It is legal for a client to present
media segments as soon as they overlap the time shift buffer, yet such media segments might not yet be available.

Furthermore, the delay between media segments entering the time shift buffer and becoming available might be
different for different representations that use different media segment durations. This difference may also change
over time if a representation does not use a constant media segment duration.

The mechanism that allows DASH clients to resolve this conflict is the presentation delay, which decreases the
time shift buffer by moving its end point into the past, creating an effective time shift buffer with a reduced duration.

Clients SHALL calculate a suitable presentation delay to ensure that the media segments it schedules for playback
are available and that there is sufficient time to download them once they become available.

The information required to calculate an optimal presentation delay might not always be available to DASH clients
(e.g. because the client is not yet aware of upcoming periods that will be added to the MPD later and will significantly
change the optimal presentation delay). Services MAY define the MPD@suggestedPresentationDelay attribute to
provide a suggested presentation delay. Clients SHOULD use MPD@suggestedPresentationDelay when provided by
the MPD, ignoring any calculated value.

The presentation just started and there is not enough content to fill the time shift buffer.

The service is published with an effectively infinite time shift buffer (up to the zero point of the MPD timeline as
indicated by the effective availability start time).

13.5. Presentation delay

ISSUE 2 Can we recommend some meaningful algorithm for this? Something to use as a starting point would
be nice to provide.

A common error in DASH content authoring is to attempt to use MPD@minBufferTime to control the
presentation delay. MPD@minBufferTime is not related to presentation delay and merely describes the
allowed jitter in content encoding ([DASH] 5.3.5.2), as determined by the encoder or derived from the

encoder configuration.

The effective time shift buffer is the time span from the start of the time shift buffer to now - PresentationDelay.
Services SHALL NOT define a value for MPD@suggestedPresentationDelay that results in an effective time shift
buffer of negative or zero duration.

Figure 16 Media segments that overlap the effective time shift buffer are the ones that may be presented at time now. Two
representations with different segment lengths are shown. Diagram assumes @availabiltiyTimeOffset=0.

Clients SHALL constrain seeking to the effective time shift buffer. Clients SHALL NOT attempt to present media
segments that fall entirely outside the effective time shift buffer.

The MPD of a dynamic presentation may change over time. The nature of the change is not restricted unless such a
restriction is explicitly defined.

Some common reasons to make changes in the MPDs of dynamic presentations:

[DASH] 5.4.1 defines various constraints for MPD updates, most importantly:

Note: As different clients might use different algorithms for calculating the presentation delay, providing
MPD@suggestedPresentationDelay enables services to roughly synchronize the playback start position of clients.

13.6. MPD updates

Adding new segment references to an existing period.

Adding new periods.

Converting unlimited-duration periods to fixed-duration periods by adding Period@duration.

Removing segment references and/or periods that have fallen out of the time shift buffer.

Shortening an existing period when editorial changes in content scheduling take place.

Removing MPD@minimumUpdatePeriod to signal that MPD will no longer be updated.

Converting the presentation to a static presentation to signal that a live service has become available on-
demand as a recording.

MPD@id does not change.

MPD.Location does not change.

Period@id does not change.

DASH-IF implementation guidelines further extend these constraints:

Additional restrictions on MPD updates are defined by other parts of this document.

Clients SHALL use @id to track period, adaptation set and representation identity across MPD updates (instead of
relying on, for example, the order of XML elements).

It will take some time for each MPD update to reach clients, both due to the MPD validity duration and network
connectivity influences. The constraints in this document set some limits on the data allowed to change with an MPD
update in order to prevent changes in data already processed by DASH clients. Services SHOULD perform
changes well in advance of the changed data being processed by clients.

The MPD of a dynamic presentation remains valid not only at its moment of initial publishing but through the entire
MPD validity duration, which is a time span of duration MPD@minimumUpdatePeriod starting from the moment the
MPD download is started by a client ([DASH] 5.4.1).

Validity means that the MPD remains in conformance to all requirements defined by [DASH] and this document. For
example, any MPD of a dynamic presentation must include enough segment references to cover a time span of
MPD@minimumUpdatePeriod into the future, in addition to the segment references that would ordinarily be expected at
time of initial download. See also § 9.2.2 Necessary segment references in dynamic presentations.

Clients SHALL process state changes that occur during the MPD validity duration. For example new media
segments will become available over time if they are referenced by the MPD and old ones become unavailable, even
without downloading a new snapshot of the MPD.

The MPD validity duration starts when the MPD download is initiated by a client, which may be some
time after it is generated/published!

The presence or absence of MPD@minimumUpdatePeriod SHALL be used by DASH services to signal whether and
when the MPD might be updated (with presence indicating potential for future updates):

The functional behavior of a representation (identified by a matching Representation@id value) does not
change, neither in terms of metadata-driven behavior (including metadata inherited from adaptation set level)
nor in terms of media segment timing. In particular:

SegmentTemplate@presentationTimeOffset does not change.

SegmentBase@presentationTimeOffset does not change.

MPD@availabilityStartTime SHALL NOT change.

Leap second adjustments are performed by adjusting the LeapSecondInformation element (see § 13.2
Leap seconds).

Period@start SHALL NOT change.

Period@duration SHALL NOT change except when explicitly allowed by other statements in this document.

AdaptationSet@id SHALL be present on every AdaptationSet element.

The set of adaptation sets present in an existing period (i.e. the set of AdaptationSet@id values) SHALL NOT
change.

The relative order of AdaptationSet elements in a Period element SHALL NOT change.

The representations present in an existing adaptation set (i.e. the set of Representation@id values) SHALL
NOT change.

The relative order of Representation elements in an AdaptationSet element SHALL NOT change.

13.6.1. MPD snapshot validity

In addition to the MPD@minimumUpdatePeriod mechanism for defining the MPD validity duration, a DASH service
MAY publish in-band MPD validity update events ([DASH] 5.10.4.2). If a DASH client processes in-band events for
determining the MPD snapshot validity duration then MPD@minimumUpdatePeriod is ignored for the purposes of
determining MPD snapshot validity.

When in-band signaling is used, the absence of an in-band event that corresponds to a particular MPD snapshot
(identified by MPD@publishTime) implies MPD snapshot validity extension until an explicit validity duration is defined
by a future in-band event. This enables finer control over MPD snapshot validity by the service but might not be
supported by all clients.

Services SHALL NOT require clients to support in-band events - it is an optional optimization mechanism to allow
clients to reduce HTTP traffic caused by fetching new MPD snapshots.

[DASH] allows the following mechanisms for adding content:

Segment references SHALL NOT be added to any period other than the last period.

An MPD update MAY combine adding segment references to the last period with adding of new periods. An MPD
update that adds content MAY be combined with an MPD update that removes content.

A nonzero value for MPD@minimumUpdatePeriod defines the MPD validity duration of the present snapshot of the
MPD, starting from the moment its download was initiated. This allows the service to provide regular updates to
the MPD while limiting the refresh interval to avoid overload.

The value 0 for MPD@minimumUpdatePeriod indicates that the MPD has no validity after the moment it is
retrieved. In such a situation, the client SHALL acquire a new MPD whenever it wants to make new media
segments available (no "natural" state changes will occur due to passage of time).

Absence of the MPD@minimumUpdatePeriod attribute indicates an infinite validity (the MPD will never be
updated).

One typical use case is to combine this with an infinite sequence of segment references, defining a
presentation that never ends and never changes.

Another use case is using a dynamic presentation to schedule the presentation of pre-prepared finite
content for a specific time span of wall clock time.

13.6.1.1. In-band MPD validity events

Note: Effectively, there are two MPD snapshot validity durations in place with in-band signaling, one defined by
MPD@minimumUpdatePeriod and one by in-band signaling. A DASH client may use either. DASH services are
sometimes published with MPD@minimumUpdatePeriod=0 in such a situation, reducing the validity duration defined
by one model to zero and allowing the other model to have full control. This may cause extra overhead for clients
that do not use in-band signals, however.

13.6.2. Adding content to the MPD

Additional segment references may be added to the last period.

Additional periods may be added to the end of the MPD.

Figure 17 MPD updates can add both segment references and periods (additions highlighted in blue).

The duration of the last period cannot change as a result of adding segment references. A live service will typically
use a period with an unlimited duration to continuously add new segment references.

When using simple addressing or explicit addressing, it is possible for a period to define an infinite sequence of
segment references that extends to the end of the period (e.g. using SegmentTemplate@duration or S@r="-1"). Such
self-extending reference sequences are equivalent to explicitly defined segment reference sequences that extend to
the end of the period and clients MAY obtain new segment references from such sequences even between MPD
updates.

[DASH] allows the following mechanisms for removing content:

Multiple content removal mechanisms MAY be combined in a single MPD update. An MPD update that removes
content MAY be combined with an MPD update that adds content.

Removal of content is only allowed if the content to be removed is expired or not yet available to
clients and guaranteed not to become available within the MPD validity duration of any MPD

snapshot potentially downloaded by clients.

To determine the content that may be removed, calculate EarliestRemovalPoint as follows for each adaptation set:

13.6.3. Removing content from the MPD

The last period may change from unlimited duration to fixed duration.

The duration of the last period may be shortened.

One or more periods may be removed entirely from the end of the MPD timeline.

Expired periods and segment references that no longer overlap the time shift buffer may be removed from the
start of the MPD timeline.

1. Let PublishingDelay be the end-to-end delay for MPD update publishing. This is the time between the MPD
generator creating a new version of the MPD and this new version becoming published to all clients on the CDN
edge (but not necessarily downloaded yet by any of them).

2. Let AvailabilityWindowEnd be the end point of the availability window.

3. Let EarliestRemovalPoint be AvailabilityWindowEnd + MPD@minimumUpdatePeriod + PublishingDelay.

Note: As each adaptation set has its own availability window, so does each adaptation set have its own
EarliestRemovalPoint.

Media segments that overlap or end before EarliestRemovalPoint might be considered by clients to be available at
the time the MPD update is processed. Therefore, an MPD update removing content SHALL NOT remove any
segment references to media segments with a segment start point before or at EarliestRemovalPoint.

Figure 18 MPD updates can remove both segment references and periods (removals highlighted in red).

Perfect handling of EarliestRemovalPoint by every service cannot be assumed. Clients SHALL NOT fail
catastrophically if an MPD update removes already buffered data but MAY incur unexpected time shift or a visible
transition at the point of removal or at time of MPD update processing. It is the responsibility of the service to avoid
removing data that may already be in use.

In addition to editorial removal from the end of the MPD, content naturally expires due to the passage of time.
Expired content also needs to be removed:

The above logic implements the removal of expired unnecessary segment references according to the rules defined
in § 9.2.3 Removal of unnecessary segment references.

Live services can reach a point where no more content will be produced - existing content will be played back by
clients and once they reach the end, playback will cease.

When an MPD is updated to a state that describes the final content of a live service, the service SHALL define a
fixed duration for the last period, remove the MPD@minimumUpdatePeriod attribute and cease performing MPD
updates to signal to clients that no more content will be added to the MPD.

Upon detecting the removal of MPD@minimumUpdatePeriod clients SHOULD present a user experience suitable for
end of live content.

A common mistake is to treat the eventual cessation of new content as a transient or fatal error
(resulting in potentially infinite loading even before the final media segment is presented to the user).

If the ending live service is to be converted to a static presentation for on-demand viewing, the service MAY change

Explicitly defined segment references (S elements) SHALL be removed when they have expired (i.e. the
segment end point has fallen out of the time shift buffer).

A repeating explicit segment reference (S element with @r != 0) SHALL NOT be removed until all
repetitions have expired.

Periods with their end points before the time shift buffer SHALL be removed.

13.6.4. End of live content

MPD@type to static when MPD@minimumUpdatePeriod is removed or do so at a later time. The resulting static
presentation MAY remain accessible on the same URL as the original dynamic presentation. For content changes
performed simultaneously with the MPD@type change, the same rules apply as for regular MPD updates of dynamic
presentations.

Clients SHALL NOT lose track of the playback position if a dynamic presentation becomes a static presentation,
even if the time span of the static presentation exceeds the time shift buffer of the dynamic presentation (e.g.
because the static presentation includes content further into the future).

The MPD of a dynamic presentation in which all content has expired (and which is not converted to a static
presentation for on-demand viewing) SHOULD be unpublished, resulting in a 404 Not Found status when clients
attempt to access the MPD.

To stay informed of the MPD updates, clients need to perform MPD refreshes at appropriate moments to download
the updated MPD snapshots.

Clients presenting dynamic presentations SHALL execute the following MPD refresh logic:

It can often be the case that a live service signals a short MPD validity duration to allow for the possibility of
terminating the last period with minimal end-to-end latency. At the same time, generating future segment references
might not require any additional information to be obtained by clients. That is, a situation might occur where constant
MPD refreshes are required but the MPD content rarely changes.

Clients using HTTP to perform MPD refreshes SHOULD use conditional GET requests as specified in [RFC7232] to
avoid unnecessary data transfers when the contents of the MPD do not change between refreshes.

Note: The MPD update constraints mean that making a live service available for on-demand viewing on the same
URL, by transforming MPD@type to static, does not allow for historical (expired) content to once again become
available. To enable expired content to be published on-demand, the MPD should be published on a new URL as
an independent static presentation.

13.7. MPD refreshes

1. When an MPD snapshot is downloaded, it is valid for the MPD validity duration as measured from the moment
the download is initiated. See § 13.6.1 MPD snapshot validity.

2. A client can expect to be able to successfully download any media segments that the MPD defines as available
at any point during the MPD validity duration.

3. The clients MAY refresh the MPD at any point. Typically this will occur because the client wants to obtain more
segment references or make more media segments (for which it might already have references) available by
extending the MPD validity duration.

This may result in a different MPD snapshot being downloaded, with updated information.

Or it may be that the MPD has not changed, in which case its MPD validity duration is extended to
DownloadStart + MPD@minimumUpdatePeriod.

Note: There is no requirement that clients poll for updates at MPD@minimumUpdatePeriod interval. They can do so
as often or as rarely as they wish - this attribute simply defines the MPD validity duration.

13.7.1. Conditional MPD downloads

14. Segment loss handling

Due to network or other faults, it is possible that media segments do not reach the DASH packager, effectively
creating a discontinuity in a representation. As DASH clients typically have difficulties processing content with gaps
and the timing model described here forbids gaps in general, missing segments would likely lead to an
unsatisfactory playback experience for end-users.

Figure 19 A DASH packager might not have every media segment available when it needs to publish them. Corrective actions
must be taken to ensure an uninterrupted timeline is presented to DASH clients.

Therefore, DASH services SHALL NOT publish periods that have missing segments, whether the segment loss is
described by "missing content segments" ([DASH] 6.2.6) or by any other means (including not describing it).

Figure 20 The simplest correction is to start a new period that does not include the affected representation for the duration of
the loss. Other representations remain present and a client can often continue seamless playback without the missing

representation.

Instead, DASH services SHOULD start a new period that does not include the representation that would experience
a gap, later restoring the representation with a new period transition. Period-connected adptation sets can enable
DASH clients to perform such transitions seamlessly in some scenarios.

Figure 21 Other solutions might involve replacing the missing media segment with a placeholder, either from a different
representation or an entirely artificial one.

Some DASH clients experience difficulties when transitioning to/from a very short period (e.g. with a
duration of only 1 media segment). Implementations MAY extend the transition period for better

compatibility with such clients.

Alternatively, given a sufficiently capable DASH packager and provided that technical constraints of representations
are satisfied, the missing media segment MAY be replaced with an aligned media segment from a lower bitrate
(likely requires a single initialization CMAF switching set [CMAF] 7.3.4.2).

Some services store text adaptation sets in stand-alone IMSC1 or WebVTT files, without segmentation or [ISOBMF
F] encapsulation.

Timecodes in stand-alone text files SHALL be relative to the period start point.

@presentationTimeOffset SHALL NOT be present and SHALL be ignored by clients if present.

Some aspects of [DASH] are not compatible with the interoperable timing model defined in this document. In the
interest of clarity, they are explicitly listed here:

This section is informative.

It may be that for various content processing workflow reasons, some tracks have a different duration from others.
For example, the audio track might start a fraction of a second before the video track and end some time before the
video track ends.

15. Timing of stand-alone IMSC1 and WebVTT text files

Note: Storing text tracks in stand-alone files is not permitted by [CMAF]. If you intend your DASH service to
conform to [CMAF], you must store text tracks as segmented [CMAF] tracks.

EXAMPLE 6
IMSC1 subtitles in stored in a stand-alone XML file.

<AdaptationSet mimeType="application/ttml+xml" lang="en-US">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle" />
 <Representation>
 <BaseURL>subtitles_en_us.xml</BaseURL>
 </Representation>
</AdaptationSet>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
AdaptationSet element.

16. Forbidden techniques

The @presentationDuration attribute SHALL NOT be used. This information serves no purpose under the
interoperable timing model.

The @availabilityTimeComplete attribute SHALL NOT be used. The concept of "incomplete but available"
media segments that this attribute enables is not part of the interoperable timing model.

There SHALL NOT be "missing content segments" ([DASH] 6.2.6) in the content. If content is lost during
processing, the expectation is that the encoder/packager will either replace it with valid content (e.g. content
from a lower representation or potentially even blank picture or silent audio) or start a new period that does not
contain the representation that incurs data loss.

17. Examples

17.1. Offer content with imperfectly aligned tracks

Figure 22 Content with different track lengths, before packaging as DASH.

You now have some choices to make in how you package these tracks into a DASH presentation that conforms to
this document. Specifically, there exists the requirement that every representation must cover the entire period with
media samples.

Figure 23 Content may be cut (indicated in black) to equalize track lengths.

The simplest option is to define a single period that contains representations resulting from cutting the content to
match the shortest common time span, thereby covering the entire period with samples. Depending on the nature of
the data that is removed, this may or may not be acceptable.

Figure 24 Content may be padded (indicated in green) to equalize track lengths.

If you wish to preserve track contents in their entirety, the most interoperable option is to add padding samples (e.g.
silence or black frames) to all tracks to ensure that all representations have enough data to cover the entire period
with samples. This may require customization of the encoding process, as the padding must match the codec
configuration of the real content and might be impractical to add after the real content has already been encoded.

Figure 25 New periods may be started at any change in the set of available tracks.

Another option that preserves track contents is to split the content into multiple periods that each contain a different
set of representations, starting a new period whenever a track starts or ends. This enables you to ensure every
representations covers its period with samples. The upside of this approach is that it can be done easily, requiring
only manipulation of the MPD. The downside is that some clients may be unable to seamlessly play across every
period transition.

Figure 26 You may combine the different approaches, cutting in some places (black), padding in others (green) and defining
multiple periods as needed.

You may wish to combine the different approaches, depending on the track, to achieve the optimal result.

Some clients are known to fail when transitioning from a period with audio and video to a period with only one of
these components. You should avoid such transitions unless you have exact knowledge of the capabilities of your
clients.

There exist scenarios where you would wish to split a period in two. Common reasons would be:

This example shows how an existing period can be split in a way that clients capable of seamless period-connected
playback do not experience interruptions in playback among representations that are present both before and after
the split.

Our starting point is a presentation with a single period that contains an audio representation with short samples and
a video representation with slightly longer samples, so that media segment start points do not always overlap.

17.2. Split a period

to insert an ad period in the middle of an existing period.

parameters of one adaptation set change (e.g. KID or display aspect ratio), requiring a new period to update
signaling.

some adaptation sets become available or unavailable (e.g. different languages).

Figure 27 Presentation with one period, before splitting. Blue is a segment, yellow is a sample. Duration in arbitrary units is
listed on samples. Segment durations are taken to be the sum of sample durations. presentationTimeOffset may have any

value - it is listed because will be referenced later.

Let’s split this period at position 220. This split occurs during segment 3 for both representations and during sample
8 and sample 5 of the audio and video representation, respectively.

The mechanism that enables period splitting in the middle of a segment is the following:

After splitting the example presentation, we arrive at the following structure.

Note: Periods may be split at any point in time as long as both sides of the split remain in conformance to this
document (e.g. each contains at least 1 media segment). Furthermore, period splitting does not require
manipulation of the segments themselves, only manipulation of the MPD.

a media segment that overlaps a period boundary exists in both periods.

representations that are split are signaled in the MPD as period-connected.

a representation that is period-connected with a representation in a previous period is marked with the period
connectivity descriptor.

clients are expected to deduplicate boundary-overlapping media segments for representations on which period
connectivity is signaled, if necessary for seamless playback (implementation-specific).

clients are expected to present only the samples that are within the bounds of the current period (may be limited
by client platform capabilities).

Figure 28 Presentation with two periods, after splitting. Audio segment 3 and video segment 3 are shared by both periods, with
the connectivity signaling indicating that seamless playback with de-duplicating behavior is expected from clients.

If indexed addressing is used, both periods will reference all segments as both periods will use the same unmodified
index segment. Clients are expected to ignore media segments that fall outside the period bounds.

Simple addressing has significant limitations on alignment at period start, making it typically
unsuitable for some multi-period scenarios. See § 18.4.2 Moving the period start point (simple

addressing).

Other periods (e.g. ads) may be inserted between the two periods resulting from the split. This does not affect the
addressing and timing of the two periods.

In encrypted content, the default_KID of a representation might need to be changed at certain points in time. Often,
the changes are closely synchronized in different representations.

17.3. Change the default_KID

To perform the default_KID change, start a new period on every change, treating each representation as an
independently changing element. With proper signaling, clients can perform this change seamlessly.

Figure 29 A change in default_KID starts a new period. Orange indicates audio and yellow video representation.

The same pattern can also be applied to other changes in representation configuration.

This section defines the addressing modes that can be used for referencing media segments, initialization
segments and index segments in interopreable DASH presentations.

Addressing modes not defined in this chapter SHALL NOT be used by DASH services. Clients SHOULD support all
addressing modes defined in this chapter.

All representations in the same adaptation set SHALL use the same addressing mode. Representations in different
adaptation sets MAY use different addressing modes. Period-connected representations SHALL use the same
addressing mode in every period.

You SHOULD choose the addressing mode based on the nature of the content:

Use explicit addressing.

Use indexed addressing or explicit addressing.

A service MAY use simple addressing which enables the packager logic to be very simple. This simplicity comes at
a cost of reduced applicability to multi-period scenarios and reduced client compatibility.

Indexed addressing enables all data associated with a single representation to be stored in a single CMAF track file
from which byte ranges are served to clients to supply media segments, the initialization segment and the index
segment. This gives it some unique advantages:

A representation that uses indexed addressing consists of a CMAF track file containing an index segment, an
initialization segment and a sequence of media segments.

Clauses in section only apply to representations that use indexed addressing.

18. Segment addressing modes

↪↪ Content generated on the fly

↪↪ Content generated in advance of publishing

A single large file is more efficient to transfer and cache than 100 000 or more small files, reducing
computational and I/O overhead.

CDNs are aware of the nature of byte-range requests and can preemptively read-ahead to fill the cache ahead
of playback.

18.1. Indexed addressing

Note: This addressing mode is sometimes called "SegmentBase" in other documents.

Figure 30 Indexed addressing is based on an index segment that references all media segments.

The MPD defines the byte range in the CMAF track file that contains the index segment. The index segment informs
the client of all the media segments that exist, the time spans they cover on the sample timeline and their byte
ranges.

Multiple representations SHALL NOT be stored in the same CMAF track file (i.e. no multiplexed representations are
to be used).

At least one Representation/BaseURL element SHALL be present in the MPD, containing a URL pointing to the
CMAF track file.

The SegmentBase@indexRange attribute SHALL be present in the MPD. The value of this attribute identifies the byte
range of the index segment in the CMAF track file ([DASH] 5.3.9.2). The value is a byte-range-spec as defined in [R
FC7233], referencing a single range of bytes.

The SegmentBase@timescale attribute SHALL be present and its value SHALL match the value of the timescale
field in the index segment (in the [ISOBMFF] sidx box) and the value of the timescale field in the initialization
segment (in the tkhd box [ISOBMFF]).

The SegmentBase/Initialization@range attribute SHALL identify the byte range of the initialization segment in the
CMAF track file. The value is a byte-range-spec as defined in [RFC7233], referencing a single range of bytes. The
Initialization@sourceURL attribute SHALL NOT be used.

Note: [DASH] makes a distinction between "segment" (HTTP-addressable entity) and "subsegment" (byte range
of an HTTP-addressable entity). This document does not make such a distinction and has no concept of
subsegments. Usage of "segment" here matches the definition of CMAF segment [CMAF].

The index segment SHALL consist of a single Segment Index Box (sidx) as defined by [ISOBMFF]. The field layout
of this data structure is as follows:

aligned(8) class SegmentIndexBox extends FullBox('sidx', version, 0) {
 unsigned int(32) reference_ID;
 unsigned int(32) timescale;

 if (version==0) {
 unsigned int(32) earliest_presentation_time;
 unsigned int(32) first_offset;
 }
 else {
 unsigned int(64) earliest_presentation_time;
 unsigned int(64) first_offset;
 }

 unsigned int(16) reserved = 0;
 unsigned int(16) reference_count;

 for (i = 1; i <= reference_count; i++)
 {
 bit (1) reference_type;
 unsigned int(31) referenced_size;
 unsigned int(32) subsegment_duration;
 bit(1) starts_with_SAP;
 unsigned int(3) SAP_type;
 unsigned int(28) SAP_delta_time;
 }
}

EXAMPLE 7
Below is an example of common usage of indexed addressing.

The example defines a timescale of 48000 units per second, with the period starting at position 8100 (or
0.16875 seconds) on the sample timeline. The client can use the index segment referenced by indexRange to
determine where the media segment containing position 8100 (and all other media segments) can be found. The
byte range of the initialization segment is also provided.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <BaseURL>showreel_audio_dashinit.mp4</BaseURL>
 <SegmentBase timescale="48000" presentationTimeOffset="8100" indexRange="848-999">
 <Initialization range="0-847"/>
 </SegmentBase>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

18.2. Structure of the index segment

The values of the fields SHOULD be determined as follows:

The track_ID of the [ISOBMFF] track that contains the data of this representation.

Same as the timescale field of the Media Header Box and same as the SegmentBase@timescale attribute in
the MPD.

The start timestamp of the first media segment on the sample timeline, in timescale units.

Distance from the end of the index segment to the first media segment, in bytes. For example, 0 indicates that
the first media segment immediately follows the index segment.

Total number of media segments referenced by the index segment.

0

Size of the media segment in bytes. Media segments are assumed to be consecutive, so this is also the
distance to the start of the next media segment.

Duration of the media segment in timescale units.

1

Either 1 or 2, depending on the sample structure in the media segment.

0

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within.

For representations that use indexed addressing, perform the following adjustments to set a new period start point:

A representation that uses explicit addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the exact sample timeline time span covered by the samples
in each media segment described in the MPD.

Note: The normative definitions of the fields are provided by [ISOBMFF]. This document describes how to
determine the correct values, relating the fields to DASH specific concepts.

reference_ID

timescale

earliest_presentation_time

first_offset

reference_count

reference_type

referenced_size

subsegment_duration

starts_with_SAP

SAP_type

SAP_delta_time

ISSUE 3 We need to clarify how to determine the right value for SAP_type GitHub #235.

18.2.1. Moving the period start point (indexed addressing)

1. Update SegmentBase@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. Update Period@duration to match the new duration.

18.3. Explicit addressing

Note: This addressing mode is sometimes called "SegmentTemplate with SegmentTimeline" in other
documents.

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

Clauses in section only apply to representations that use explicit addressing.

Figure 31 Explicit addressing uses a segment template that is combined with explicitly defined time spans for each media
segment in order to reference media segments, either by start time or by sequence number.

The MPD SHALL contain a SegmentTemplate/SegmentTimeline element, containing a set of segment references
that satisfies the requirements defined in this document. The segment references exist as a sequence of S elements,
each of which references one or more media segments with start time S@t and duration S@d timescale units on the
sample timeline ([DASH] 5.3.9.6). The SegmentTemplate@duration attribute is not present ([DASH] 5.3.9.2).

To enable concise segment reference definitions, an S element may represent a repeating segment reference that
indicates a number of repeated consecutive media segments with the same duration. The value of S@r indicates the
number of additional consecutive media segments that exist ([DASH] 5.3.9.6).

The segment start point is calculated by adding the segment start point and duration of the previous media segment,
unless S@t is specified in which case S@t is the segment start point on the sample timeline ([DASH] 5.3.9.6).

The value of S@r is nonnegative, except for the last S element which MAY have a negative value in S@r ([DASH]
5.3.9.6), indicating that the repeated segment references continue indefinitely up to a media segment that either
ends at or overlaps the period end point.

Updates to the MPD of a dynamic presentation MAY add more S elements, remove expired S elements, increment
SegmentTemplate@startNumber, add the S@t attribute to the first S element or increase the value of S@r on the last S
element but SHALL NOT otherwise modify existing S elements.

The S@n attribute SHALL NOT be used - segment numbers form a continuous sequence starting with
SegmentTemplate@startNumber.

The SegmentTemplate@eptDelta attribute SHALL NOT be present. The information represented by this attribute can
be calculated independently and having it be present would only create additional possibility for conflicting data.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

Either the $Time$ or $Number$ template variable SHALL be present in SegmentTemplate@media to uniquely identify
media segments:

Note: Only additional segment references are counted by @r, so S@r=5 indicates a total of 6 consecutive media
segments with the same duration.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1) ([DASH] 5.3.9.5.3).

If using $Time$ addressing, the value for each segment reference is the segment start point on the sample
timeline, in timescale units ([DASH] 5.3.9.5.3).

EXAMPLE 8
Below is an example of common usage of explicit addressing.

The example defines 225 media segments starting at position 900 on the sample timeline and lasting for a total
of 900.225 seconds. The period ends at 900 seconds, so the last 0.225 seconds of content is clipped (out of
bounds samples may also simply be omitted from the last media segment). The period starts at position 900
which matches the start position of the first media segment found at the relative URL video/900.m4s.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="900" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within.

For representations that use explicit addressing, perform the following adjustments to set a new period start point:

EXAMPLE 9
Below is an example of explicit addressing used in a scenario where different media segments have different
durations (e.g. due to encoder limitations).

The example defines a sequence of 11 media segments starting at position 120 on the sample timeline and
lasting for a total of 95520 units at a timescale of 1000 units per second (which results in 95.52 seconds of data).
The period starts at position 810, which is within the first media segment, found at the relative URL
video/120.m4s. The fifth media segment repeats once, resulting in a sixth media segment with the same
duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="810"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="120" d="8520"/>
 <S d="8640"/>
 <S d="8600"/>
 <S d="8680"/>
 <S d="9360" r="1"/>
 <S d="8480"/>
 <S d="9080"/>
 <S d="6440"/>
 <S d="10000"/>
 <S d="8360"/>
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

18.3.1. Moving the period start point (explicit addressing)

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. Update Period@duration to match the new duration.

3. Remove any unnecessary segment references.

4. If using the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

Note: See § 9 Representation timing and § 13.6.3 Removing content from the MPD to understand the constraints
that apply to segment reference removal.

A representation that uses simple addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the MPD describing the nominal time span of the sample
timeline covered by each media segment.

Simple addressing defines the nominal time span of each media segment in the MPD. The true time
span covered by samples within the media segment can be slightly different than the nominal time

span. See § 18.4.1 Inaccuracy in media segment timing when using simple addressing.

Clauses in section only apply to representations that use simple addressing.

Figure 32 Simple addressing uses a segment template that is combined with approximate first media segment timing
information and an average media segment duration in order to reference media segments, either by start time or by sequence

number. Note that @eptDelta does not affect the generated paths!

The SegmentTemplate@duration attribute defines the nominal duration of a media segment in timescale units ([DAS
H] 5.3.9.2).

The set of segment references consists of the first media segment starting SegmentTemplate@eptDelta timescale
units relative to the period start point and all other media segments following in a consecutive series of equal time
spans of SegmentTemplate@duration timescale units, ending with a media segment that ends at or overlaps the
period end time. The @eptDelta attribute SHALL be present if its value is not zero.

@eptDelta is new in [DASH] 4th edition (published 2020) and DASH client support is not yet
widespread. Clients that do not implement support for @eptDelta may fail to correctly begin or end

playback of periods that use simple addressing with @eptDelta != 0. If the client cannot be upgraded
to consider @eptDelta then you are advised to use explicit addressing with such content.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

18.4. Simple addressing

Note: This addressing mode is sometimes called "SegmentTemplate without SegmentTimeline" in other
documents.

Note: @eptDelta is expressed as an offset from the period start point to the segment start point of the first media
segment ([DASH] 5.3.9.2). In other words, the value will be negative if the first media segment starts before the
period start point.

Either the $Time$ or $Number$ template variable SHALL be present in SegmentTemplate@media to uniquely identify
media segments:

When using simple addressing, the samples contained in a media segment MAY cover a different time span on the
sample timeline than what is indicated by the nominal timing in the MPD, as long as no constraints defined in this
document are violated by this deviation.

Figure 33 Simple addressing relaxes the requirement on media segment contents matching the sample timeline. Red boxes
indicate samples.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1) ([DASH] 5.3.9.5.3).

If using $Time$ addressing, the template value for each segment reference is the segment start point on the
sample timeline minus @eptDelta ([DASH] 5.3.9.5.3).

EXAMPLE 10
Below is an example of common usage of simple addressing.

The example defines a sample timeline with a timescale of 1000 units per second, with the period starting at
position 900 and the first media segment starting at position 400. The average duration of a media segment is
4001. Media segment numbering starts at 800, so the first media segment is found at the relative URL
video/800.m4s. The sequence of media segments continues to the end of the period, which is 900 seconds long,
making for a total of 226 defined segment references.

The period start point is 500 milliseconds after the segment start point of the first media segment and the period
end point is approximately 69 milliseconds after the segment start point of the last media segment. The real
timing of the samples within the media segments may differ from these nominal values in the MPD, to the extent
permitted by the timing model.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900" eptDelta="-500"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

18.4.1. Inaccuracy in media segment timing when using simple addressing

The allowed deviation is defined as the maximum offset between the edges of the nominal time span (as defined by
the MPD) and the edges of the true time span (as defined by the contents of the media segment). The deviation is
evaluated separately for each edge.

This allowed deviation does not relax any requirements that do not explicitly define an exception.

The maximum deviation of either edge is 50% of the nominal media segment duration and MAY be in either direction
([DASH] 7.2.1).

Allowing inaccurate timing is intended to enable reasoning on the sample timeline using average values for media
segment timing. If the addressing data says that a media segment contains 4 seconds of data on average, a client
can predict with reasonable accuracy which samples are found in which media segments, while at the same time the
service is not required to publish per-segment timing data in the MPD. It is expected that the content is packaged
with this contraint in mind (i.e. every segment cannot be inaccurate in the same direction - a shorter segment now
implies a longer segment in the future to make up for it).

To ensure that no gaps in the timeline are introduced by the allowed inaccuracy, additional constraints apply to the
contents of media segments at the edges of a period:

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within. This can be challenging when using
simple addressing.

Note: This results in a maximum true duration of 200% (+50% outward extension on both edges) and a minimum
true duration of 1 sample (-50% inward from both edges would result in 0 duration but empty media segments are
not allowed).

The [=media segment] that starts at or overlaps the period start point SHALL contain a sample that starts at or
overlaps the period start point.

The [=media segment] that ends at or overlaps the period end point SHALL contain a sample that ends at or
overlaps the period end point.

EXAMPLE 11
Consider a media segment with a nominal start time of 8 seconds from period start and a nominal duration of 4
seconds, within a period of unlimited duration.

The following are all valid contents for such a media segment:

Near period boundaries, all the constraints of timing and addressing must still be respected! Consider a media
segment with a nominal start time of 0 seconds from period start and a nominal duration of 4 seconds. If such a
media segment contained samples from 1 to 5 seconds (offset of 1 second away from zero point at both ends,
which is within acceptable limits) it would be nonconforming because of the requirement that the first media
segment contain a media sample that starts at or overlaps the period start point.

samples from 8 to 12 seconds (perfect accuracy)

samples from 6 to 14 seconds (maximally large segment allowed, 50% increase from both ends)

samples from 9.9 to 10 seconds (near-minimally small segment; while we allow a 50% decrease from both
ends, potentially resulting in zero duration, every segment must still contain at least one sample)

samples from 6 to 10 seconds (maximal offset toward zero point at both ends)

samples from 10 to 14 seconds (maximal offset away from zero point at both ends)

18.4.2. Moving the period start point (simple addressing)

The media segment that overlaps the period start point must contain a sample that starts at or
overlaps the period start point. Likewise, the media segment that overlaps the period end point must

contain a sample that ends at or overlaps the period end point. These constraints are defined in
§ 18.4.1 Inaccuracy in media segment timing when using simple addressing and typically make it

impossible to move the period start point or split a period when using simple addressing and taking
advantage of the inaccuracy allowed to exist between nominal timing of the sample timeline and the

true contents of the media segments.

The rest of this chapter assumes that the nominal timing of media segments matches the real timing. If you cannot
satisfy this constraint but still wish to move the period start point, convert to explicit addressing. See § 18.4.3
Converting simple addressing to explicit addressing.

To move the period start point for representations that use simple addressing without timing inaccuracy:

@eptDelta is new in [DASH] 4th edition (published 2020). If the resulting SegmentTemplate@eptDelta
value is not zero, DASH clients that do not support @eptDelta may exhibit incorrect behavior when
transitioning between periods. The only workaround is to either convert to explicit addressing or to
choose a period start point that overlaps with the segment start points of all representations in all
adaptation sets that use simple addressing! Such points might not exist, depending on the media

segment structure of the presentation.

It may sometimes be desirable to convert a presentation from simple addressing to explicit addressing. This chapter
provides an algorithm to do this.

Simple addressing allows for inaccuracy in media segment timing. No inaccuracy is allowed by
explicit addressing. The mechanism of conversion described here is only valid when there is no

inaccuracy. If the nominal time spans in original the MPD differ from the true time spans of the media
segments, re-package the content from scratch using explicit addressing instead of converting the

MPD.

To perform the conversion, execute the following steps:

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired period start point on the sample
timeline.

2. Update SegmentTemplate@eptDelta to indicate the relative position of the segment start point of the first media
segment from the start of the period (with a negative sign indicating the segment start point is before the period
start point).

3. If using the $Time$ template variable and if the value of @eptDelta changed in the previous step, rename all
media segments to conform to the new pattern generated by the URL template. The pattern will change
whenever @eptDelta changes because $Time$ refers not only to the segment start point but also includes
@eptDelta.

4. If using the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

5. Update Period@duration to match the new duration.

18.4.3. Converting simple addressing to explicit addressing

1. Calculate the number of media segments in the representation as SegmentCount =
Ceil((AsSeconds(Period@duration) - AsSeconds(SegmentTempalte@eptDelta)) / (

SegmentTemplate@duration / SegmentTemplate@timescale)).

2. Update the MPD.

[ECMASCRIPT] is unable to accurately represent numeric values greater than 253 (9007199254740991) using built-in
types. Therefore, interoperable services cannot use such values.

1. Add a single SegmentTemplate/SegmentTimeline element.

2. Add a single SegmentTimeline/S element.

3. Set S@t to equal SegmentTemplate@presentationTimeOffset plus @eptDelta.

4. Set S@d to equal SegmentTemplate@duration.

5. Remove SegmentTemplate@duration.

6. Set S@r to SegmentCount - 1.

7. Remove SegmentTemplate@eptDelta. It is not needed nor permitted with explicit addressing.

3. If using $Time$ addressing in SegmentTemplate@media, rename all media segments to match the segment start
point in the template variable (simple addressing uses segment start point minus @eptDelta for $Time$).

EXAMPLE 12
Below is an example of a simple addressing representation before conversion.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900" eptDelta="-500"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

As part of the conversion, we calculate SegmentCount = Ceil((900 - (-0.5)) / (4001 / 1000)) = 226.

After conversion, we arrive at the following result.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 startNumber="800">
 <SegmentTimeline>
 <S t="400" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - the above are not fully
functional MPD files.

19. Large timescales and time values

All timescales are start times used in a DASH presentations SHALL be sufficiently small that no timecode value
exceeding 253 will be encountered, even during the publishing of long-lasting live services.

All units expressed in MPD fields of datatype xs:duration SHALL be treated as fixed size:

MPD fields having datatype xs:duration SHALL NOT use the year and month units and SHOULD be expressed as
a count of seconds, without using any of the larger units.

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and
notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text
with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

Note: This may require the use of 64-bit fields, although the values must still be limited to under 253.

EXAMPLE 13

The issue does not arise with the common 90 KHz timescale. Counting time since the Unix epoch until 11
November 2019 we get 141721093260000 which is well within the allowed range of values.

Another common timescale is 10000000 (10 million timescale units per second) often used by Smooth
Streaming. Counting time since the Unix epoch until 11 November 2019 we get 15746788140000000 which does
exceed the critical value and will result in broken playback on many clients! To correct such an error, use a
smaller timescale or a MPD timeline zero point that is not so far in the past.

20. Representing durations in XML

60S = 1M (minute)

60M = 1H

24H = 1D

30D = 1M (month)

12M = 1Y

Conformance

EXAMPLE 14
This is an example of an informative example.

Note, this is an informative note.

Index

Information technology — Multimedia application format (MPEG-A) — Part 19: Common media application
format (CMAF) for segmented media. March 2020. Published. URL: https://www.iso.org/standard/79106.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats. December 2019. Published. URL: https://www.iso.org/standard/79329.html

Terms defined by this specification

addressing modes, in §18

availability window, in §13.3

available, in §13.3

dynamic presentation, in §7

effective availability start time, in §7

effective time shift buffer, in §13.5

explicit addressing, in §18.3

indexed addressing, in §18.1

media segment, in §11

MPD, in §4.1

MPD refreshes, in §13.7

MPD timeline, in §6

MPD validity duration, in §13.6.1

period-connected, in §12

periods, in §8

presentation, in §4.1

presentation delay, in §13.5

Representations, in §9

sample timeline, in §9.1

segment end point, in §11

segment references, in §9

segment start point, in §11

simple addressing, in §18.4

static presentation, in §7

timescale, in §9.1

timescale units, in §9.1

time shift, in §13.4

time shift buffer, in §13.4

unnecessary segment reference, in §9.2.3

wall clock, in §13.1

References

Normative References

[CMAF]

[DASH]

[DASH-CMAF]

https://www.iso.org/standard/79106.html
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/79329.html
https://www.iso.org/standard/79329.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats — Amendment 1: CMAF support, events processing model and other
extensions. Under development. URL: https://www.iso.org/standard/79884.html

Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format. December
2015. International Standard. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

Information technology — Generic coding of moving pictures and associated audio information — Part 1:
Systems. June 2019. Published. URL: https://www.iso.org/standard/75928.html

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests. June 2014.
Proposed Standard. URL: https://httpwg.org/specs/rfc7232.html

R. Fielding, Ed.; Y. Lafon, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Range Requests. June
2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7233.html

ATSC Standard: A/300:2017 “ATSC3.0 System”. URL: https://https://www.atsc.org/wp-
content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf

ETSI TS 103 285 V1.2.1 (2018-03): Digital Video Broadcasting (DVB); MPEG-DASH Profile for Transport of
ISO BMFF Based DVB Services over IP Based Networks. March 2018. Published. URL:
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf

ECMAScript Language Specification. URL: https://tc39.es/ecma262/

David Dorwin; et al. Encrypted Media Extensions. 18 September 2017. REC. URL:
https://www.w3.org/TR/encrypted-media/

R. Pantos, Ed.; W. May. HTTP Live Streaming. August 2017. Informational. URL:
https://tools.ietf.org/html/rfc8216

IERS Bulletin C (leap second announcements). URL:
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt

Matthew Wolenetz; et al. Media Source Extensions™. 17 November 2016. REC. URL:
https://www.w3.org/TR/media-source/

[ISOBMFF]

[MPEG2TS]

[RFC2119]

[RFC7232]

[RFC7233]

Informative References

[ATSC3]

[DVB-DASH]

[ECMASCRIPT]

[ENCRYPTED-MEDIA]

[HLS]

[LEAP-SECONDS]

[MEDIA-SOURCE]

Issues Index

ISSUE 1 We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services. ↵

https://www.iso.org/standard/79884.html
https://www.iso.org/standard/79884.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
https://www.iso.org/standard/75928.html
https://www.iso.org/standard/75928.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7233.html
https://httpwg.org/specs/rfc7233.html
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
https://tools.ietf.org/html/rfc8216
https://tools.ietf.org/html/rfc8216
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt
https://datacenter.iers.org/data/latestVersion/16_BULLETIN_C16.txt
https://www.w3.org/TR/media-source/
https://www.w3.org/TR/media-source/

ISSUE 2 Can we recommend some meaningful algorithm for this? Something to use as a starting point would
be nice to provide. ↵

ISSUE 3 We need to clarify how to determine the right value for SAP_type GitHub #235. ↵
↑
→Loading [MathJax]/extensions/tex2jax.js

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

	DASH-IF implementation guidelines: restricted timing model
	Commit Snapshot, 19 May 2020
	Table of Contents
	1. Purpose
	2. Interpretation
	3. Disclaimer
	4. DASH and related standards
	4.1. Structure of a DASH presentation
	4.2. Terminology cross-reference across standards
	4.3. Terminology choices in this document

	5. Goal of the interoperable timing model
	6. MPD timeline
	7. Presentation timing characteristics
	8. Period timing
	8.1. First and last period timing in static presentations
	8.2. First and last period timing in dynamic presentations

	9. Representation timing
	9.1. Sample timeline
	9.2. Referencing media segments
	9.2.1. Necessary segment references in static presentations
	9.2.2. Necessary segment references in dynamic presentations
	9.2.3. Removal of unnecessary segment references

	9.3. Alignment of periods and representations

	10. Clock drift is forbidden
	10.1. Workarounds for clock drift

	11. Media segments
	12. Period connectivity
	12.1. Segment reference duplication during connected period transitions
	12.2. Period continuity

	13. Dynamic presentations
	13.1. Clock synchronization
	13.2. Leap seconds
	13.3. Availability
	13.4. Time shift buffer
	13.5. Presentation delay
	13.6. MPD updates
	13.6.1. MPD snapshot validity
	13.6.2. Adding content to the MPD
	13.6.3. Removing content from the MPD
	13.6.4. End of live content

	13.7. MPD refreshes
	13.7.1. Conditional MPD downloads

	14. Segment loss handling
	15. Timing of stand-alone IMSC1 and WebVTT text files
	16. Forbidden techniques
	17. Examples
	17.1. Offer content with imperfectly aligned tracks
	17.2. Split a period
	17.3. Change the default_KID

	18. Segment addressing modes
	18.1. Indexed addressing
	18.2. Structure of the index segment
	18.2.1. Moving the period start point (indexed addressing)

	18.3. Explicit addressing
	18.3.1. Moving the period start point (explicit addressing)

	18.4. Simple addressing
	18.4.1. Inaccuracy in media segment timing when using simple addressing
	18.4.2. Moving the period start point (simple addressing)
	18.4.3. Converting simple addressing to explicit addressing

	19. Large timescales and time values
	20. Representing durations in XML
	Conformance
	Index
	Terms defined by this specification

	References
	Normative References
	Informative References

	Issues Index

