
DASH-IF implementation guidelines: the DASH
timing model

https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html

GitHub
Inline In Spec

DASH Industry Forum

Table of Contents

Commit Snapshot, 3 December 2019

This version:

Issue Tracking:

Editors:

1 Purpose

2 Interpretation

3 Disclaimer

4 DASH and related standards
4.1 Relationship to the previous versions of this document
4.2 Structure of a DASH presentation

5 Timing model
5.1 Conformance requirements
5.2 MPD Timeline
5.3 Periods
5.4 Representations
5.5 Sample timeline
5.6 Clock drift is forbidden
5.7 Media segments
5.7.1 Media segment duration deviation
5.7.2 Segments must be aligned

5.8 Period connectivity
5.8.1 Period continuity

5.9 Dynamic MPDs
5.9.1 Real time clock synchronization
5.9.2 Availability
5.9.3 Time shift buffer
5.9.4 Presentation delay
5.9.5 MPD updates
5.9.5.1 Adding content to the MPD

5.9.5.2 Removing content from the MPD

https://dashif.org/
https://dashif-documents.azurewebsites.net/Guidelines-TimingModel/master/Guidelines-TimingModel.html
https://github.com/Dash-Industry-Forum/Guidelines-TimingModel/issues

The scope of the DASH-IF InterOperability Points (IOPs) defined in this document is to provide support interoperable
services for high-quality video distribution based on MPEG-DASH and related standards. The specified features
enable relevant use cases including on-demand and live services, ad insertion, content protection and subtitling. The
integration of different media codecs into DASH-based distribution is also defined.

The guidelines are provided in order to address DASH-IF members' needs and industry best practices. The
guidelines provide support the implementation of conforming service offerings as well as the DASH client
implementation. While alternative interpretations may be equally valid in terms of standards conformance, services
and clients created following the guidelines defined in this document can be expected to exhibit highly interoperable
behavior between different implementations.

Requirements in this document describe required service and client behaviors that DASH-IF considers
interoperable:

5.9.5.3 End of live content

5.9.6 MPD refreshes
5.9.6.1 Conditional MPD downloads

5.10 Timing of stand-alone IMSC1 and WebVTT text files
5.11 Forbidden techniques
5.12 Examples
5.12.1 Offer content with imperfectly aligned tracks
5.12.2 Split a period
5.12.3 Change the default_KID

5.13 Segment addressing modes
5.13.1 Indexed addressing
5.13.2 Structure of the index segment
5.13.2.1 Moving the period start point (indexed addressing)

5.13.3 Explicit addressing
5.13.3.1 Moving the period start point (explicit addressing)

5.13.4 Simple addressing
5.13.4.1 Inaccuracy in media segment timing when using simple addressing

5.13.4.2 Moving the period start point (simple addressing)

5.13.4.3 Converting simple addressing to explicit addressing

5.14 Large timescales and time values
5.15 Representing durations in XML

6 Externally defined terms

Conformance

Index
Terms defined by this specification

References
Normative References
Informative References

Issues Index

1. Purpose

2. Interpretation

This document uses statements of fact when describing normative requirements defined in referenced specifications
such as [MPEGDASH] and [MPEGCMAF]. [RFC2119] statements (e.g. "SHALL", "SHOULD" and "MAY") are used
when this document defines a new requirement or further constrains a requirement from a referenced document. In
order to clearly separate the requirements of referenced specifications vs. the additional requirements set by this
document, the normative statements in each section of this document are separated into two different groups, ones
starting with "(referenced specification) requires/recommends:" and the ones starting with "This document
requires/recommends:". See also Conformance.

All DASH presentations are assumed to be conforming to an IOP. A service may explicitly signal itself as conforming
by including the string https://dashif.org/guidelines/ in MPD@profiles.

There is no strict backward compatibility with previous versions - best practices change over time and what was
once considered sensible may be replaced by a superior approach later on. Therefore, clients and services that
were conforming to version N of this document are not guaranteed to conform to version N+1.

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of
intellectual property rights, including patents and patent applications owned or controlled by any of the authors or
developers of this document. No patent license, either implied or express, is granted to you by this document.
DASH-IF has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights
and obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the
DASH-IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable
law, this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties.
Those third party documents and technologies may be subject to third party rules and licensing terms. No intellectual
property license, either implied or express, to any third party material is granted to you by this document or DASH-IF.
DASH-IF makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance material is provided, are
only published as a candidate technologies, and may be removed if no test material is provided before releasing a
new version of this guidelines document. For the availability of test material, please check http://www.dashif.org.

DASH is a set of manifest and media formats for adaptive media delivery defined by [MPEGDASH]. Dynamic
Adaptive Streaming over HTTP (DASH) is initially defined in the first edition of ISO/IEC 23009-1 which was
published in April 2012 and some corrections were done in 2013. In May 2014, ISO/IEC published the second
version of ISO/IEC 23009-1 that includes additional features and provide additional clarifications. ISO/IEC published
the third and fourth editions of ISO/IEC 23009-1 in 2019 and 2020.

1. If a service provider follows these requirements in a published DASH service, that service is likely to experience
successful playback on a wide variety of clients and exhibit graceful degradation when a client does not support
all features used by the service.

2. If a client implementer follows the client-oriented requirements described in this document, the client plays the
content conforming to this document.

3. Disclaimer

4. DASH and related standards

ISO/IEC also published the 1st and 2nd edition of ISO/IEC 23000-19 'Common media application format (CMAF) for
segmented media' [MPEGCMAF] in 2018 and 2019. CMAF defines segment and chunk format based on ISO Base
Media File Format, optimized for streaming delivery. CMAF defines a set of well defined constraints that allows
interoperability for media deliverable objects, which are compatible with [MPEGDASH].

This document is based on the 4th edition DASH [MPEGDASH] and 2nd edition CMAF [MPEGCMAF]
specifications.

DASH together with related standards and specifications is the foundation for an ecosystem of services and clients
that work together to enable audio/video/text and related content to be presented to end-users.

Figure 1 This document connects DASH with international standards, industry specifications and DASH-IF guidelines.

[MPEGDASH] defines a highly flexible set of building blocks that needs to be constrained to a meaningful subset to
ensure interoperable behavior in common scenarios. This document defines constraints that limit DASH features to
those that are considered appropriate for use in interoperable clients and services.

This document was generated in close coordination with [DVB-DASH]. The features are aligned to the extent
considered reasonable. The tools and features are aligned to the extent considered reasonable. In addition, DASH-
IF worked closely with ATSC to develop a DASH profile for ATSC3.0 for broadcast distribution [ATSC3].

Clients consuming DASH content will need to interact with the host device’s media platform. While few constraints
are defined on these interactions, this document does assume that the media platform implements APIs that are
equivalent to the popular Media Source Extensions (MSE) and Encrypted Media Extensions (EME).

There is no strict backward compatibility with previous versions of this document - best practices change over time
and what was once considered sensible may be replaced by a superior approach later on. Therefore, clients and
services that were conforming to version N of this document are not guaranteed to conform to version N+1.

The initial two versions of this document where based on the first edition of ISO/IEC 23009-1. Version 4.3 was
mostly relying on the third edition of ISO/IEC 23009-1.

This version of the document relies on the 4th edition of ISO/IEC 23009-1 that was technically frozen in July 2019 and
is expected to be published by the end of 2019 as ISO/IEC 23009-1:2020.

[MPEGDASH] specifies the structure of a DASH presentation, which consists primarily of:

4.1. Relationship to the previous versions of this document

4.2. Structure of a DASH presentation

1. The manifest or MPD, which describes the content and how it can be accessed.

2. Data containers that clients will download over the course of a presentation in order to obtain media samples.

Figure 2 Relationships of primary DASH data structure and the standards they are defined in.

The MPD is an XML file that follows a schema defined by [MPEGDASH]. This schema defines various extension
mechanisms for 3rd parties. This document defines some extensions, as do other industry specifications.

[MPEGDASH] defines two data container formats, one based on [ISOBMFF] and the other [MPEG2TS]. However,
only the former is used in modern solutions. This document only supports services using the [ISOBMFF] container
format.

[MPEGCMAF] is the constrained media format based on [ISOBMFF], specifically designed for adaptive streaming.
This document uses [MPEGCMAF] compatible data containers.

The data container format defines the physical structure of the following elements described by the MPD:

[MPEGDASH] [MPEGCMAF] [ISOBMFF]

(media) segment, subsegment CMAF segment

initialization segment CMAF header

index segment, segment index segment index box (sidx)

Figure 3 Quick reference of closely related terms in different standards.

Note: The relationship to [MPEGCMAF] is constrained to the container format. In particular, there is no
requirement to conform to [MPEGCMAF] media profiles.

1. Each representation in the MPD references an initialization segment.

2. Each representation in the MPD references any number of media segments.

3. Some representations in the MPD may reference an index segment, depending on the addressing mode used.

Note: HLS (RFC8216) also support ([MPEGCMAF]). Therefore, under certain constraints, the content encoded in
([MPEGCMAF]) can be delivered using MPD or HLS m3u8 manifest format.

Note: [MPEGDASH] has the concept of "segment" (URL-addressable media object) and "subsegment" (byte
range of URL-addressable media object), whereas [MPEGCMAF] does not make such a distinction. This
document uses [MPEGCMAF] segment terminology, with the term segment in this document being equivalent to
"CMAF segment" which in turns means "DASH media segment or media subsegment", depending the employed
DASH profile.

The purpose of this chapter is to give a holistic overview of DASH presentation timing and related segment
addressing. It is not intended to provide details of the timing model and all possible uses of the attributes in [MPEGD
ASH].

In order to achieve higher interoperability, DASH-IF’s Implementation Guidelines allow considerably limited options
than the ones provided by [MPEGDASH], constraining services to a specific set of reasonably flexible behaviors that
are highly interoperable with modern client platforms. This chapter covers the timing model and related segment
addressing schemes for these common use-cases.

This document adds additional constraints to [MPEGDASH] timing requirements.

To be conformant to this document:

[MPEGDASH] defines DASH general timing model in its clause 4.3.

The MPD defines the MPD timeline of a Media Presentation, which serves as the baseline for all scheduling
decisions made during DASH presentation playback.

There exist two types of Media Presentations, indicated by the MPD@type.

The playback of a static MPD (defined in [MPEGDASH] as a MPD with MPD@type="static") does not depend on
the mapping of the MPD timeline to real time. This means that entire presentation is available at any time and a
client can play any part of the presentation at any time (e.g. it can start playback at any time and seek freely within the
entire presentation).

The MPD timeline of a dynamic MPD (defined in [MPEGDASH] as a MPD with MPD@type="dynamic") has a fixed
mapping to wall clock time, with each point on the MPD timeline corresponding to a point in real time. This means
that segments of the presentation become available over time. Clients can introduce an additional offset with respect
to wall clock time for the purpose of maintaining an input buffer to cope with network bandwidth fluctuations.

The time zero on the MPD timeline of a dynamic MPD is mapped to the point in wall clock time indicated by
MPD@availabilityStartTime.

The ultimate purpose of the MPD is to enable the client to obtain media samples for playback. Additionally a DASH
client can dynamically switch between different bitrates of the same content to adapt to the network bandwidth
fluctuation. The following data structures are most relevant to locating and scheduling the samples:

5. Timing model

5.1. Conformance requirements

Content generated by a service offering SHALL be compliant to

[MPEGDASH] and [MPEGDASHCMAFPROFILE].

Additional constraints in following sections

Clients SHALL be compliant to the constraints in the following sections.

5.2. MPD Timeline

Note: In addition to mapping the MPD timeline to wall clock time, a dynamic MPD can be updated during the
presentation. Updates may add new periods and remove or modify existing ones including adding new segments
with progress in time, though some restrictions apply. See § 5.9.5 MPD updates.

1. The MPD consists of consecutive periods which map data onto the MPD timeline.

Figure 4 The primary elements described by an MPD.

An MPD defines an ordered list of one or more consecutive periods. A period is both a time span on the MPD
timeline and a definition of the data to be presented during this time span. Period timing is relative to the zero point
of the MPD timeline.

Figure 5 An MPD is a collection of consecutive periods.

Common reasons for defining multiple periods are:

Periods are self-contained - a client is not required to know the contents of another period in order to correctly
present a period. Knowledge of the contents of different periods may be used by a client to achieve seamless period
transitions, especially when working with period-connected representations.

2. Each period contains of one or more representations, each of which provides media samples inside a
sequence of media segments.

3. Representations within a period are grouped in adaptation sets, which associate related representations and
decorate them with metadata.

5.3. Periods

Assembling a presentation from multiple self-contained pieces of content.

Inserting ads in the middle of existing content and/or replacing spans of existing content with ads.

Adding/removing certain representations as the nature of the content changes (e.g. a new title starts with a
different set of offered languages).

Updating period-scoped metadata (e.g. codec configuration or DRM signaling).

[MPEGDASH] clause 5.3.2 defines the period’s requirements in MPD authoring. Among others it requires the
followings:

A representation is a sequence of segments as defined by [MPEGDASH] 5.3.1 and 5.3.5. A Representation
element is a collection of these segment references and a description of the samples within the referenced media
segments.

In practice, each representation usually belongs to exactly one adaptation set and often belongs to exactly one
period, although a representation may be connected with a representation in another period.

EXAMPLE 1
The below static MPD consists of two 20-second periods. The duration of the first period is calculated using the
start point of the second period. The total duration of the presentation is 40 seconds.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
 <Period>
 ...
 </Period>
 <Period start="PT20S" duration="PT20S">
 ...
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

1. All periods are consecutive and non-overlapping. A period may have a duration of zero.

Note: A period with a duration of zero might, for example, be the result of ad-insertion logic deciding not to insert
any ad.

2. In a static MPD, the first period starts at the time zero of the MPD timeline. In a dynamic MPD, the first period
starts at or after the zero point of the MPD timeline.

3. In a static MPD, either the last period has a Period@duration or MPD@mediaPresentationDuration exists.

4. In a dynamic MPD, the last period may have a Period@duration, in which case it has a fixed duration. If without
Period@duration, the last period in a dynamic MPD has an unknown duration, which allows to extend the
timeline indefinitely.

Note: In a dynamic MPD, a period with an unknown duration may be converted to fixed-duration by an MPD
update. Periods in a dynamic MPD can also be shortened or removed entirely under certain conditions.
However, Media Presentation is defined until (current wall clock time + MPD@minimumUpdatePeriod), by which the
current MPD is still valid. See § 5.9.5 MPD updates.

5. MPD@mediaPresentationDuration may be present. If present, it accurately matches the duration between the
time zero on the MPD timeline and the end of the last period. Clients SHALL calculate the total duration of a
static MPD by adding up the durations of each period and SHALL NOT rely on the presence of
MPD@mediaPresentationDuration.

Note: This calculation is necessary because the durations of XLink periods can only be known after the XLink is
resolved. Therefore it is impossible to always determine the total MPD duration on the service side as only the
client is guaranteed to have access to all the required knowledge.

5.4. Representations

Each segment reference addresses a media segment that corresponds to a specific time span on the sample
timeline. Each media segment contains samples for a specific time span on the sample timeline.

The exact mechanism used to define segment references depends on the addressing mode used by the
representation.

This document requires the following additional requirement:

As recommended by [MPEGDASH] 7.2.1:

This document additionally requires:

Figure 6 In a static MPD, the entire period must be covered with media segments.

Note: Simple addressing allows the actual time span of samples within a media segment to deviate from the
corresponding time span described in the MPD ([MPEGDASH] 7.2.1). All timing-related clauses in this
document refer to the timing described in the MPD (i.e. according to MPD timeline)unless otherwise noted.

All representations in the same adaptation set SHALL use the same addressing mode.

There should not be gaps or overlapping media segments in a representation.

In a static MPD a representation SHALL contain enough segment references to cover the entire time span of
the period.

In a dynamic MPD, a representation element SHALL contain enough segment references to cover the time span
of the period that intersects with the time shift buffer. However, gaps in this time span are allowed.

Figure 7 In a dynamic MPD, the time shift buffer determines the set of required segment references in each representation.
Media segments filled with gray need not be referenced due to falling outside the time shift buffer, despite falling within the

bounds of a period.

As required by [MPEGDASH] 5.3.9.5.3:

As allowed by [MPEGDASH] 7.2.1:

An unnecessary segment reference is one that is not defined as required by this chapter.

In a static MPD, a representation SHALL NOT contain unnecessary segment references, except when using indexed
addressing in which case such segment references MAY be present.

In a dynamic MPD, a representation SHALL NOT contain unnecessary segment references except when any of the
following applies, in which case an unnecessary segment reference MAY be present:

Clients SHALL NOT present any samples from media segments that are entirely outside the period, even if such
media segments are referenced.

Note: In a dynamic MPD, each Media segments only become available when its end point is within their
availability window (This time may need to be adjusted by availabilityTimeOffset (need to be defined) and
@availabilityTimeComplete values) ([MPEGDASH] 5.3.9.5.1 and 5.3.5.3). It is a valid situation that a media
segment is required to be referenced but is not yet available.

A dynamic MPD remains valid for its entire validity duration after publishing. In other words, a dynamic MPD
supplies enough segment references to allow the time shift buffer to extend to now +
MPD@minimumUpdatePeriod, where now is the current time according to the synchronized clock.

Media segment start/end points may be unaligned with period start/end points except when using simple
addressing. This possible offset is signaled by @eptDelta.

1. The segment reference is for future content and will eventually become necessary.

2. The segment reference is defined via indexed addressing.

3. The segment reference is defined by an <S> element that defines multiple references using S@r, some of which
are necessary.

4. Removal of the segment reference is not allowed by content removal constraints.

Figure 8 Media segments and samples need not align with period boundaries. Some samples may be entirely outside a period
(marked gray) and some may overlap the period boundary (yellow).

If a media segment overlaps a period boundary, clients SHOULD NOT present the samples that lie outside the
period and SHOULD present the samples that lie either partially or entirely within the period.

The samples within a representation exist on a linear sample timeline defined by the encoder that created the
samples. One or more sample timelines are mapped onto the MPD timeline by metadata stored in or referenced by
the MPD ([MPEGDASH] 7.3.2).

Figure 9 Sample timelines are mapped onto the MPD timeline based on parameters defined in the MPD.

The sample timeline is formed after applying any [ISOBMFF] edit lists ([MPEGDASH] 7.3.2).

This document additionally requires:

Note: In the end, which samples are presented is entirely up to the client. It may sometimes be impractical to
present media segments only partially, depending on the capabilities of the client platform, the type of media
samples involved and any dependencies between samples.

5.5. Sample timeline

Note: A sample timeline is linear - encoders are expected to use an appropriate timescale and sufficiently large
timestamp fields to avoid any wrap-around. If wrap-around does occur, a new period must be started in order to
establish a new sample timeline.

The same sample timeline SHALL be shared by all representations in the same adaptation set.
Representations in different adaptation sets MAY use different sample timelines.

The sample timeline is measured in timescale units defined as a number of units per second. This value (the
timescale) SHALL be present in the MPD as SegmentTemplate@timescale or SegmentBase@timescale
(depending on the addressing mode).

Figure 10 @presentationTimeOffset is the key component in establishing the relationship between the MPD timeline and a
sample timeline.

The point on the sample timeline indicated by @presentationTimeOffset is equivalent to the period start point on the
MPD timeline ([MPEGDASH] Table 15). The value is provided by SegmentTemplate@presentationTimeOffset or
SegmentBase@presentationTimeOffset, depending on the addressing mode, and has a default value of 0 timescale
units.

Some encoders experience clock drift - they do not produce exactly 1 second worth of output per 1 second of input,
either stretching or compressing the sample timeline with respect to the MPD timeline.

This document adds the following requirement:

If a packager receives input from an encoder at the wrong rate, it must take corrective action. For example, it might:

Of course, such after-the-fact corrective actions can disrupt the end-user experience. The optimal solution is to fix the
defective encoder.

A media segment is an HTTP-addressable data structure that contains one or more media samples.

[MPEGCMAF] requires that Media segments contain one or more consecutive media samples, and consecutive
media segments in the same representation contain consecutive media samples.

Note: While optional in [MPEGDASH], the presence of the @timescale attribute is required by the interoperable
timing model because the default value of 1 is unlikely to match any real-world content and is far more likely to
indicate an unintentional content authoring error.

Note: To transform a sample timeline position SampleTime to an MPD timeline position, use the formula MpdTime
= Period@start + (SampleTime - @presentationTimeOffset) / @timescale.

5.6. Clock drift is forbidden

A DASH service SHALL NOT publish content that suffers from clock drift.

1. Drop a span of content if input is produced faster than real-time.

2. Insert regular padding content if input is produced slower than real-time. This padding can take different forms:

Silence or a blank picture.

Repeating frames.

Insertion of short-duration periods where the affected representations are not present.

5.7. Media segments

Note: Different media segments may be different byte ranges accessed on the same URL.

[MPEGDASH] 7.2.1 requires the followings:

[MPEGCMAF] 7.3.4 and [MPEGDASHCMAFPROFILE] requires the following:

When using simple addressing, the samples contained in a media segment may cover a different time span on the
sample timeline than what is indicated by the nominal timing in the MPD timeline. This deviation is defined as the
offset between the edges of the nominal time span (as defined by MPD timeline) and the edges of the true time span
(as defined by [=sample timeline], and is calculated separately for each edge.

Figure 11 In simple addressing, a media segment may cover a different time span on the sample timeline than what is indicated
by the nominal timing in the MPD timeline. Red boxes indicate samples.

[MPEGDASH] 7.2.1 requires: The duration deviation is no more than 50% of the nominal media segment duration
and may be in either direction.

This document also recommends:

Media segments are said to be aligned if the earliest presentation time of all media segments on the sample
timeline is equal in all representations that belong to the same adaptation set.

[MPEGDASHCMAFPROFILE] requires:

Media segments contains the media samples that exactly match the time span on the sample timeline that is
assigned to the media segment by the MPD, except when using simple addressing in which case a certain
amount of inaccuracy may be present as defined in § 5.13.4.1 Inaccuracy in media segment timing when using
simple addressing.

The media segment that starts at or overlaps the period start point contains a media sample that starts at or
overlaps the period start point and the media segment that ends at or overlaps the period end point contains a
media sample that ends at or overlaps the period end point.

Aligned media segments in different representations of the same adaptation set contains samples for the same
true time span, even if using simple addressing with inaccurate media segment timing.

5.7.1. Media segment duration deviation

Media segments of a representation SHOULD be equal in duration. Occasional jitter MAY occur (e.g. due to
encoder decisions on GOP size).

Note: [DVB-DASH] defines some relevant constraints in section 4.5. Consider obeying these constraints to be
compatible with [DVB-DASH].

5.7.2. Segments must be aligned

Media segments are aligned.

When using simple addressing or explicit addressing, the media segments alignment is signaled by
AdaptationSet@segmentAlignment=true in the MPD. When using indexed addressing, this is signaled by

The precise definition of Period connectivity can found in [MPEGDASH] 5.3.2.4. However, generally speaking, in
certain circumstances content may be offered such that a representation is technically compatible with the content of
a representation in a previous period. Such representations are period-connected.

Any subset of the representations in a period may be period-connected with their counterparts in a future or past
period. Period connectivity may be chained across any number of periods.

For signaling the period connectivity between representation of two periods in a MPD, [MPEGDASH] 5.3.2.4
requires:

Figure 12 Representations can be signaled as period-connected, enabling client optimizations. Arrows on diagram indicate
direction of connectivity reference (from future to past), with the implied message being "the client can use the same decoder it

used where the arrow points to".

Note that [MPEGDASH] allows:

AdaptationSet@subsegmentAlignment=true in the MPD.

5.8. Period connectivity

Note: Connectivity is generally achieved by using the same encoder to encode the content of multiple periods
using the same settings. Keep in mind, however, that decryption is also a part of the client media pipeline - it is
not only the codec parameters that are configured by the initialization segment; different decryption parameters
are likely to break connectivity that would otherwise exist.

Representation@id is equal.

AdaptationSet@id is equal.

The adaptation set in the second period has a supplemental property descriptor with:

@shemeIdUri set to urn:mpeg:dash:period-connectivity:2015.

@value set to the Period@id of the first period.

Initialization segments of period-connected representations to be functionally equivalent (i.e. the initialization
segment from any period-connected representation can be used to initialize playback of any period-connected
representation).

Note: Not all representations in an adaptation set need to be period-connected. For example, if a new period is
introduced to add a representation that contains a new video quality level, all other representations will likely be
connected but not the one that was added.

An MPD may contain unrelated periods between periods that contain period-connected representations.

The sample timelines of period-connected representations may be mutually discontinuous (e.g. due to encoder
clock wrap-around or skipping some content as a result of editorial decisions).

Figure 13 The same media segment will often exist in two periods at a period-connected transition. On the diagram, this is
segment 4.

This document recommends:

This document also recommends:

In addition to period connectivity, [MPEGDASH] 5.3.2.4 defines period continuity, which is a special case of period
connectivity where the two samples on the boundary between the connected representations are consecutive on the
same sample timeline. Continuity implies connectivity.

For signaling the period continuity, [MPEGDASH] 5.3.2.4 requires:

This document requires:

This document requires:

As a period may start and/or end in the middle of a media segment, the same media segment may
simultaneously exist in two period-connected representations, with one part of it scheduled for playback during
the first period and the other part during the second period. This is likely to be the case when no sample timeline
discontinuity is introduced by the transition.

Media Presentation with connected content cross periods SHOULD be signaled in the MPD as period-
connected. This is expected to help clients ensure seamless playback across period transitions.

Clients SHOULD NOT present a media segment twice when it occurs on both sides of a period transition in a
period-connected representation.

Clients SHOULD ensure seamless playback of period-connected representations in consecutive periods.

Note: The exact mechanism that ensures seamless playback depends on client capabilities and will be
implementation-specific. Any shared media segment overlapping the period boundary may need to be detected
and deduplicated to avoid presenting it twice.

5.8.1. Period continuity

Note: The above can only be true if the sample boundary exactly matches the period boundary.

The same signaling as for period connectivity, except that the value to use for @schemeIdUri is
urn:mpeg:dash:period-continuity:2015.

Media Presentation with continuous content cross periods SHOULD be signaled in the MPD with period
continuity.

period connectivity SHALL NOT be simultaneously signaled on the same representation for which period
continuity is signaled.

Clients MAY take advantage of any platform-specific optimizations for seamless playback that knowledge of
period continuity enables; beyond that, clients SHALL treat continuity the same as connectivity.

This section only applies to dynamic MPDs.

Three main factors differentiate them from static MPDs:

[MPEGDASH] 5.4.1 requires:

The MPD validity duration starts when the MPD download is initiated by a client, which may be some
time after it is generated/published!

This document requires: DASH clients SHALL support the presentation of dynamic MPDs.

It is critical to synchronize the clocks of the client with the clock of service when using a dynamic MPD. The time
indicated by the clock does not necessarily need to match some universal standard as long as the two are mutually
synchronized.

The use of UTCTiming is optional in [MPEGDASH].

This document requires:

The use of a "default time source" is not allowed. The mechanism of time synchronization must
always be explicitly defined in the MPD by every service.

This document requires:

5.9. Dynamic MPDs

1. The segments described in a dynamic MPD may become available over time, i.e. not all segments are
available.

2. Playback of a dynamic MPD is synchronized to a real time clock (with some amount of client-chosen time shift
allowed).

3. A dynamic MPD may change over time, with clients retrieving new snapshots of the MPD when the validity
duration of the previous snapshot expires.

A dynamic MPD conforms to the MPD constraints not only at its moment of initial publishing but through the
entire MPD validity duration, which is a period of MPD@minimumUpdatePeriod starting from the moment the
MPD download is started by a client, unless overridden by in-band validity expiration signaling.

5.9.1. Real time clock synchronization

A dynamic MPD SHALL include at least one UTCTiming element that defines a clock synchronization
mechanism. If multiple UTCTiming elements are listed, their order determines the order of preference.

The set of time synchronization mechanisms SHALL be restricted to the following schemes defined in [MPEGD
ASH]:

urn:mpeg:dash:utc:http-xsdate:2014

urn:mpeg:dash:utc:http-iso:2014

urn:mpeg:dash:utc:http-ntp:2014

urn:mpeg:dash:utc:ntp:2014

urn:mpeg:dash:utc:http-head:2014

urn:mpeg:dash:utc:direct:2014

A client presenting a dynamic MPD SHALL synchronize its local clock according to the UTCTiming elements in
the MPD and SHALL emit a warning or error to application developers when clock synchronization fails, no

A media segment is available when an HTTP request to acquire the media segment can be started and successfully
performed to completion by a client. During playback of a dynamic MPD, new media segments continuously become
available and stop being available with the passage of time. [MPEGDASH] defines the segment availability times
of a segment as the duration in wall-clock time in which that segment is available.

An availability window is a time span on the MPD timeline that determines which media segments can be
expected to be available. Each representation has its own availability window. Consequently, availability window at
each moment is defined by the union of segment availability times of all available segments at that moment.

A segment start point (referred to as "MPD start time of a segment in [MPEGDASH]) is the presentation start time of
the segment in MPD timeline.

The segment end point is the presentation end time of the segment in MPD timeline.

[MPEGDASH] requires:

It is the responsibility of the service to ensure that media segments are available to clients when they
are described as available by the MPD. Consider that the criterium for availability is a successful

download by clients, not successful publishing from a packager.

The availability window is calculated as follows:

Figure 14 The availability window determines which media segments can be expected to be available, based on where their
segment end point lies.

This document requires:

UTCTiming elements are defined or none of the referenced clock synchronization mechanisms are supported by
the client.

ISSUE 1 We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services.

5.9.2. Availability

A service makes available all media segments that have their end point inside or at the end of the availability
window.

1. Let now be the current wall clock time according to the synchronized clock.

2. Let AvailabilityWindowStart be now - MPD@timeShiftBufferDepth.

If MPD@timeShiftBufferDepth is not defined, let AvailabilityWindowStart be MPD@availabilityStartTime.

3. Let TotalAvailabilityTimeOffset be the sum of all @availabilityTimeOffset values that apply to the
representation (those directly on the Representation element and any of its ancestors).

4. The availability window is the time span from AvailabilityWindowStart to now + TotalAvailabilityTimeOffset.

The time shift buffer is a time span on the MPD timeline that defines the set of media segments that a client is
allowed to present at the current moment in time according to the synchronized clock (now).

This is the mechanism by which clients can introduce a time shift (an offset) between real time and the MPD
timeline when presenting dynamic MPDs. The time shift is zero when a client always chooses to play back the media
segment at the end point of the time shift buffer. By playing back media segments from further in the past, a time shift
is introduced.

The following additional factors further constrain the set of media segments that can be presented at the current time
and can force a client to introduce a time shift:

The time shift buffer extends from now - MPD@timeShiftBufferDepth to now. In the absence of
MPD@timeShiftBufferDepth the start of the time shift buffer is MPD@availabilityStartTime.

Figure 15 Media segments overlapping the time shift buffer may potentially be presented by a client, if other constraints do not
forbid it.

This document requires:

A dynamic MPD SHALL contain a period that ends at or overlaps the end point of the time shift buffer, except when
reaching the end of live content in which case the last period MAY end before the end of the time shift buffer.

Clients MAY at any point attempt to acquire any media segments that the MPD signals as available. Clients
SHALL NOT attempt to acquire media segments that the MPD does not signal as available.

Clients SHOULD NOT assume that media segments described by the MPD as available are available and
SHOULD implement appropriate retry/fallback behavior to account for timing errors by slow-publishing or
eagerly-unpublishing services.

5.9.3. Time shift buffer

Note: A time shift of 30 seconds means that the client starts presenting a media segment at the moment when its
position on the MPD timeline reaches a distance of 30 seconds from the end of the time shift buffer.

1. § 5.9.2 Availability - not every media segment in the time shift buffer is guaranteed to be available.

2. § 5.9.4 Presentation delay - the service may define a delay that forbids the use of a section of the time shift
buffer.

Clients MAY present samples from media segments that overlap (either in full or in part) the time shift buffer,
assuming no other constraints forbid it.

Clients SHALL NOT present samples from media segments that are entirely outside the time shift buffer
(whether in the past or the future).

The start of the time shift buffer may be before the start of the first period. Clients SHALL NOT use regions of the
time shift buffer that are not covered by periods.

5.9.4. Presentation delay

There is a natural conflict between the availability window and the time shift buffer. It is legal for a client to present
media segments as soon as they overlap the time shift buffer, yet such media segments might not yet be available.

Furthermore, the delay between media segments entering the time shift buffer and becoming available might be
different for different representations that use different media segment durations. This difference may also change
over time if a representation does not use a constant media segment duration.

This document requires:

[MPEGDASH] allows:

This document requires:

The effective time shift buffer is the time span from the start of the time shift buffer to now - PresentationDelay.

Figure 16 Media segments that overlap the effective time shift buffer are the ones that may be presented at time now. Two
representations with different segment lengths are shown. Diagram assumes @availabiltiyTimeOffset=0.

This document requires:

A common error in DASH content authoring is to attempt to use MPD@minBufferTime to control the
presentation delay. This attribute describes the jitter in content encoding and is determined by the

encoder or derived from the encoder configuration.

Clients SHALL calculate a suitable presentation delay to ensure that the media segments it schedules for
playback are available and that there is sufficient time to download them once they become available. In
essence, the presentation delay decreases the time shift buffer, creating an effective time shift buffer with a
reduced duration.

Services may define the MPD@suggestedPresentationDelay attribute to provide a suggested presentation
delay.

Clients SHOULD use MPD@suggestedPresentationDelay when provided, ignoring the calculated value.

Note: As different clients might use different algorithms for calculating the presentation delay, providing
MPD@suggestedPresentationDelay enables services to roughly synchronize the playback start position of clients.

Clients SHALL constrain seeking to the effective time shift buffer. Clients SHALL NOT attempt to present media
segments that fall entirely outside the effective time shift buffer.

5.9.5. MPD updates

Dynamic MPDs may change over time. The nature of the change is not restricted unless such a restriction is explicitly
defined.

Some common reasons to make changes in dynamic MPDs:

[MPEGDASH] 5.4.1 requires the following restrictions for MPD updates:

Additional restrictions on MPD updates are defined by other parts of this document.

This document requires:

This document also requires:

Adding new segment references to an existing period.

Adding new periods.

Converting unlimited-duration periods to fixed-duration periods by adding Period@duration.

Removing segment references and/or periods that have fallen out of the time shift buffer.

Shortening an existing period when changes in content scheduling take place.

Removing MPD@minimumUpdatePeriod to signal that MPD will no longer be updated.

Converting the MPD to a static MPD to signal that a live service has become available on-demand as a
recording.

MPD@id does not change.

MPD.Location does not change.

MPD@availabilityStartTime does not change.

Period@id does not change.

Period@start does not change.

Period@duration does not change except when explicitly allowed by other statements in this document.

The adaptation sets present in a period (i.e. the set of AdaptationSet@id values) does not change.

The representations present in an adaptation set (i.e. the set of Representation@id values) does not change.

The functional behavior of a representation (identified by a matching Representation@id value) does not
change, neither in terms of metadata-driven behavior (including metadata inherited from adaptation set level)
nor in terms of media segment timing. In particular:

SegmentTemplate@presentationTimeOffset does not change.

SegmentBase@presentationTimeOffset does not change.

The presence or absence of MPD@minimumUpdatePeriod SHALL be used by a service to signal whether the
MPD might be updated (with presence indicating potential for future updates). The value of this field indicates
the MPD validity duration of the present snapshot of the MPD, starting from the moment its download was
initiated. Absence of the MPD@minimumUpdatePeriod attribute indicates an infinite validity (the MPD will never be
updated). The value 0 indicates that the MPD has no validity after the moment it was retrieved.

Since clients usually require some time to download and process an MPD update, a service SHOULD NOT
assume perfect update timing.

In addition to signaling that clients are expected to poll for regular MPD updates, a service MAY publish in-band
events to update the MPD validity duration at moments of its choosing.

Clients SHOULD use @id to track period, adaptation set and representation identity across MPD updates.

Clients SHALL process state changes that occur during the MPD validity duration. For example new media
segments will become available over time if they are referenced by the MPD and old ones become unavailable,
even without an MPD update.

[MPEGDASH] allows two mechanisms for adding content:

Multiple content adding mechanisms may be combined in a single MPD update. An MPD update that adds content
may be combined with an MPD update that removes content.

Figure 17 MPD updates can add both segment references and periods (additions highlighted in blue).

This document requires:

When using simple addressing or explicit addressing, it is possible for a period to define an infinite sequence of
segment references that extends to the end of the period (e.g. using SegmentTemplate@duration or r="-1"). Such
self-extending reference sequences are equivalent to explicitly defined segment reference sequences that extend to
the end of the period and clients MAY obtain new segment references from such sequences even between MPD
updates.

Removal of content is only allowed if the content to be removed is not yet available to clients and
guaranteed not to become available until clients receive the MPD update. See § 5.9.2 Availability.

MPD@minimumUpdatePeriod = 0 indicates that the MPD has no validity after the moment it was retrieved. In such
a situation, the client SHALL have to acquire a new MPD whenever it wants to make new media segments
available (no "natural" state changes will occur).

Clients SHOULD NOT assume that they can get all updates in time (they may already be attempting to buffer
some media segments that were removed by an MPD update).

5.9.5.1. Adding content to the MPD

Additional segment references may be added to the last period.

Additional periods may be added to the end of the MPD.

Segment references SHALL NOT be added to any period other than the last period.

An MPD update MAY combine adding segment references to the last period with adding of new periods.

Note: The duration of the last period cannot change as a result of adding segment references. A live service will
generally use a period with an unlimited duration to continuously add new segment references.

5.9.5.2. Removing content from the MPD

To determine the content that may be removed, let EarliestRemovalPoint be availability window end +
MPD@minimumUpdatePeriod.

Figure 18 MPD updates can remove both segment references and periods (removals highlighted in red).

An MPD update removing content MAY remove any segment references to media segments that start after
EarliestRemovalPoint at the time the update is published.

Media segments that overlap or end before EarliestRemovalPoint might be considered by clients to be available at
the time the MPD update is processed and therefore SHALL NOT be removed by an MPD update.

The following mechanisms exist removing content:

Multiple content removal mechanisms MAY be combined in a single MPD update.

Clients SHALL NOT fail catastrophically if an MPD update removes already buffered data but MAY incur unexpected
time shift or a visible transition at the point of removal. It is the responsibility of the service to avoid removing data
that may already be in use.

In addition to editorial removal from the end of the MPD, content naturally expires due to the passage of time.
Expired content also needs to be removed:

Note: As each representation has its own availability window, so does each representation have its own
EarliestRemovalPoint.

The last period MAY change from unlimited duration to fixed duration.

The duration of the last period MAY be shortened.

One or more periods MAY be removed entirely from the end of the MPD.

Note: When using indexed addressing or simple addressing, removal of segment references from the end of the
period only requires changing Period@duration. When using explicit addressing, pruning some S elements may
be appropriate to avoid leaving unnecessary segment references.

Explicitly defined segment references (S elements) SHALL be removed when they have expired (i.e. the media
segment end point has fallen out of the time shift buffer).

A repeating explicit segment reference (S element with @r != 0) SHALL NOT be removed until all
repetitions have expired.

Periods with their end points before the time shift buffer SHALL be removed.

An MPD update that removes content MAY be combined with an MPD update that adds content.

Live services can reach a point where no more content will be produced - existing content will be played back by
clients and once they reach the end, playback will cease.

This document requires:

To stay informed of the MPD updates, clients need to perform MPD refreshes at appropriate moments to download
the updated MPD snapshots.

Clients presenting dynamic MPDs SHALL execute the following MPD refresh logic:

Services may publish in-band events to explicitly signal MPD validity instead of expecting clients to regularly refresh
on their own initiative. This enables finer control by the service but might not be supported by all clients.

Services SHALL NOT require clients to support in-band events.

It can often be the case that a live service signals a short MPD validity period to allow for the possibility of terminating
the last period with minimal end-to-end latency. At the same time, generating future segment references might not
require any additional information to be obtained by clients. That is, a situation might occur where constant MPD
refreshes are required but the MPD content rarely changes.

Clients using HTTP to perform MPD refreshes SHOULD use conditional GET requests as specified in [RFC7232] to
avoid unnecessary data transfers when the contents of the MPD do not change between refreshes.

5.9.5.3. End of live content

When this occurs, services SHALL define a fixed duration for the last period, remove the
MPD@minimumUpdatePeriod attribute and cease performing MPD updates to signal that no more content will be
added to the MPD.

The MPD@type MAY be changed to static at this point or later if the service is to be converted to a static MPD
for on-demand viewing.

5.9.6. MPD refreshes

1. When an MPD snapshot is downloaded, it is valid for the present moment and at least
MPD@minimumUpdatePeriod after that.

2. A client can expect to be able to successfully download any media segments that the MPD defines as available
at any point during the MPD validity duration.

3. The clients MAY refresh the MPD at any point. Typically this will occur because the client wants to obtain more
segment references or make more media segments (for which it might already have references) available by
extending the MPD validity duration.

This may result in a different MPD snapshot being downloaded, with updated information.

Or it may be that the MPD has not changed, in which case its validity period is extended to now +
MPD@minimumUpdatePeriod.

Note: There is no requirement that clients poll for updates at MPD@minimumUpdatePeriod interval. They can do so
as often or as rarely as they wish - this attribute simply defines the MPD validity duration.

5.9.6.1. Conditional MPD downloads

Some services store text adaptation sets in stand-alone IMSC1 or WebVTT files, without segmentation or [ISOBMF
F] encapsulation.

This document requires:

Some aspects of [MPEGDASH] are not compatible with the interoperable timing model defined in this document. In
the interest of clarity, they are explicitly listed here:

This section is informative.

It may be that for various content processing workflow reasons, some tracks have a different duration from others.
For example, the audio track might start a fraction of a second before the video track and end some time before the
video track ends.

Figure 19 Content with different track lengths, before packaging as DASH.

You now have some choices to make in how you package these tracks into a DASH presentation that conforms to
this document. Specifically, there exists the requirement that every representation must cover the entire period with
media samples.

5.10. Timing of stand-alone IMSC1 and WebVTT text files

Timecodes in stand-alone text files SHALL be relative to the period start point.

@presentationTimeOffset SHALL NOT be present and SHALL be ignored by clients if present.

EXAMPLE 2
IMSC1 subtitles in stored in a stand-alone XML file.

<AdaptationSet mimeType="application/ttml+xml" lang="en-US">
 <Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle" />
 <Representation>
 <BaseURL>subtitles_en_us.xml</BaseURL>
 </Representation>
</AdaptationSet>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
AdaptationSet element.

5.11. Forbidden techniques

The @presentationDuration attribute SHALL NOT be used.

5.12. Examples

5.12.1. Offer content with imperfectly aligned tracks

Figure 20 Content may be cut (indicated in black) to equalize track lengths.

The simplest option is to define a single period that contains representations resulting from cutting the content to
match the shortest common time span, thereby covering the entire period with samples. Depending on the nature of
the data that is removed, this may or may not be acceptable.

Figure 21 Content may be padded (indicated in green) to equalize track lengths.

If you wish to preserve track contents in their entirety, the most interoperable option is to add padding samples (e.g.
silence or black frames) to all tracks to ensure that all representations have enough data to cover the entire period
with samples. This may require customization of the encoding process, as the padding must match the codec
configuration of the real content and might be impractical to add after the real content has already been encoded.

Figure 22 New periods may be started at any change in the set of available tracks.

Another option that preserves track contents is to split the content into multiple periods that each contain a different
set of representations, starting a new period whenever a track starts or ends. This enables you to ensure every
representations covers its period with samples. The upside of this approach is that it can be done easily, requiring
only manipulation of the MPD. The downside is that some clients may be unable to seamlessly play across every
period transition.

Figure 23 You may combine the different approaches, cutting in some places (black), padding in others (green) and defining
multiple periods as needed.

You may wish to combine the different approaches, depending on the track, to achieve the optimal result.

Some clients are known to fail when transitioning from a period with audio and video to a period with only one of
these components. You should avoid such transitions unless you have exact knowledge of the capabilities of your
clients.

There exist scenarios where you would wish to split a period in two. Common reasons would be:

This example shows how an existing period can be split in a way that clients capable of seamless period-connected
playback do not experience interruptions in playback among representations that are present both before and after
the split.

Our starting point is a presentation with a single period that contains an audio representation with short samples and
a video representation with slightly longer samples, so that media segment start points do not always overlap.

5.12.2. Split a period

to insert an ad period in the middle of an existing period.

parameters of one adaptation set change (e.g. KID or display aspect ratio), requiring a new period to update
signaling.

some adaptation sets become available or unavailable (e.g. different languages).

Figure 24 Presentation with one period, before splitting. Blue is a segment, yellow is a sample. Duration in arbitrary units is
listed on samples. Segment durations are taken to be the sum of sample durations. presentationTimeOffset may have any

value - it is listed because will be referenced later.

Let’s split this period at position 220. This split occurs during segment 3 for both representations and during sample
8 and sample 5 of the audio and video representation, respectively.

The mechanism that enables period splitting in the middle of a segment is the following:

After splitting the example presentation, we arrive at the following structure.

Note: Periods may be split at any point in time as long as both sides of the split remain in conformance to this
document (e.g. each contains at least 1 media segment). Furthermore, period splitting does not require
manipulation of the segments themselves, only manipulation of the MPD.

a media segment that overlaps a period boundary exists in both periods.

representations that are split are signaled in the MPD as period-connected.

a representation that is period-connected with a representation in a previous period is marked with the period
connectivity descriptor.

clients are expected to deduplicate boundary-overlapping media segments for representations on which period
connectivity is signaled, if necessary for seamless playback (implementation-specific).

clients are expected to present only the samples that are within the bounds of the current period (may be limited
by client platform capabilities).

Figure 25 Presentation with two periods, after splitting. Audio segment 3 and video segment 3 are shared by both periods, with
the connectivity signaling indicating that seamless playback with de-duplicating behavior is expected from clients.

If indexed addressing is used, both periods will reference all segments as both periods will use the same unmodified
index segment. Clients are expected to ignore media segments that fall outside the period bounds.

Simple addressing has significant limitations on alignment at period start, making it unsuitable for
some multi-period scenarios. See § 5.13.4.2 Moving the period start point (simple addressing).

Other periods (e.g. ads) may be inserted between the two periods resulting from the split. This does not affect the
addressing and timing of the two periods.

In encrypted content, the default_KID of a representation might need to be changed at certain points in time. Often,
the changes are closely synchronized in different representations.

5.12.3. Change the default_KID

To perform the default_KID change, start a new period on every change, treating each representation as an
independently changing element. With proper signaling, clients can perform this change seamlessly.

Figure 26 A change in default_KID starts a new period. Orange indicates audio and yellow video representation.

The same pattern can also be applied to other changes in representation configuration.

This section defines the addressing modes that can be used for referencing media segments, initialization
segments and index segments in interopreable DASH presentations.

Addressing modes not defined in this chapter SHALL NOT be used by DASH services. Clients SHOULD support all
addressing modes defined in this chapter.

All representations in the same adaptation set SHALL use the same addressing mode. Representations in different
adaptation sets MAY use different addressing modes. Period-connected representations SHALL use the same
addressing mode in every period.

You SHOULD choose the addressing mode based on the nature of the content:

Use explicit addressing.

Use indexed addressing or explicit addressing.

A service MAY use simple addressing which enables the packager logic to be very simple. This simplicity comes at
a cost of reduced applicability to multi-period scenarios and reduced client compatibility.

Indexed addressing enables all data associated with a single representation to be stored in a single CMAF track file
from which byte ranges are served to clients to supply media segments, the initialization segment and the index
segment. This gives it some unique advantages:

ISSUE 2 What about period connectivity? #238

5.13. Segment addressing modes

↪↪ Content generated on the fly

↪↪ Content generated in advance of publishing

Note: Future updates to [MPEGDASH] are expected to eliminate the critical limitations of simple addressing,
enabling a wider range of applicable use cases.

ISSUE 3 Update to match [MPEGDASH] 4th edition.

A single large file is more efficient to transfer and cache than 100 000 or more small files, reducing
computational and I/O overhead.

CDNs are aware of the nature of byte-range requests and can preemptively read-ahead to fill the cache ahead
of playback.

5.13.1. Indexed addressing

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/238

A representation that uses indexed addressing consists of a CMAF track file containing an index segment, an
initialization segment and a sequence of media segments.

Clauses in section only apply to representations that use indexed addressing.

Figure 27 Indexed addressing is based on an index segment that references all media segments.

The MPD defines the byte range in the CMAF track file that contains the index segment. The index segment informs
the client of all the media segments that exist, the time spans they cover on the sample timeline and their byte
ranges.

Multiple representations SHALL NOT be stored in the same CMAF track file (i.e. no multiplexed representations are
to be used).

At least one Representation/BaseURL element SHALL be present in the MPD, containing a URL pointing to the
CMAF track file.

The SegmentBase@indexRange attribute SHALL be present in the MPD. The value of this attribute identifies the byte
range of the index segment in the CMAF track file. The value is a byte-range-spec as defined in [RFC7233],
referencing a single range of bytes.

The SegmentBase@timescale attribute SHALL be present and its value SHALL match the value of the timescale
field in the index segment (in the [ISOBMFF] sidx box) and the value of the timescale field in the initialization
segment (in the tkhd box [ISOBMFF]).

The SegmentBase/Initialization@range attribute SHALL identify the byte range of the initialization segment in the
CMAF track file. The value is a byte-range-spec as defined in [RFC7233], referencing a single range of bytes. The
Initialization@sourceURL attribute SHALL NOT be used.

Note: This addressing mode is sometimes called "SegmentBase" in other documents.

Note: [MPEGDASH] makes a distinction between "segment" (HTTP-addressable entity) and "subsegment" (byte
range of an HTTP-addressable entity). This document does not make such a distinction and has no concept of
subsegments. Usage of "segment" here matches the definition of CMAF segment [MPEGCMAF].

The index segment SHALL consist of a single Segment Index Box (sidx) as defined by [ISOBMFF]. The field layout
is as follows:

aligned(8) class SegmentIndexBox extends FullBox('sidx', version, 0) {
 unsigned int(32) reference_ID;
 unsigned int(32) timescale;

 if (version==0) {
 unsigned int(32) earliest_presentation_time;
 unsigned int(32) first_offset;
 }
 else {
 unsigned int(64) earliest_presentation_time;
 unsigned int(64) first_offset;
 }

 unsigned int(16) reserved = 0;
 unsigned int(16) reference_count;

 for (i = 1; i <= reference_count; i++)
 {
 bit (1) reference_type;
 unsigned int(31) referenced_size;
 unsigned int(32) subsegment_duration;
 bit(1) starts_with_SAP;
 unsigned int(3) SAP_type;
 unsigned int(28) SAP_delta_time;
 }
}

EXAMPLE 3
Below is an example of common usage of indexed addressing.

The example defines a timescale of 48000 units per second, with the period starting at position 8100 (or
0.16875 seconds) on the sample timeline. The client can use the index segment referenced by indexRange to
determine where the media segment containing position 8100 (and all other media segments) can be found. The
byte range of the initialization segment is also provided.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <BaseURL>showreel_audio_dashinit.mp4</BaseURL>
 <SegmentBase timescale="48000" presentationTimeOffset="8100" indexRange="848-999">
 <Initialization range="0-847"/>
 </SegmentBase>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.13.2. Structure of the index segment

The values of the fields are determined as follows:

The track_ID of the [ISOBMFF] track that contains the data of this representation.

Same as the timescale field of the Media Header Box and same as the SegmentBase@timescale attribute in
the MPD.

The start timestamp of the first media segment on the sample timeline, in timescale units.

Distance from the end of the index segment to the first media segment, in bytes. For example, 0 indicates that
the first media segment immediately follows the index segment.

Total number of media segments referenced by the index segment.

0

Size of the media segment in bytes. Media segments are assumed to be consecutive, so this is also the
distance to the start of the next media segment.

Duration of the media segment in timescale units.

1

Either 1 or 2, depending on the sample structure in the media segment.

0

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within.

For representations that use indexed addressing, perform the following adjustments to set a new period start point:

A representation that uses explicit addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the exact time span covered by each media segment
described in the MPD.

Clauses in section only apply to representations that use explicit addressing.

reference_ID

timescale

earliest_presentation_time

first_offset

reference_count

reference_type

referenced_size

subsegment_duration

starts_with_SAP

SAP_type

SAP_delta_time

ISSUE 4 We need to clarify how to determine the right value for SAP_type. #235

5.13.2.1. Moving the period start point (indexed addressing)

1. Update SegmentBase@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. Update Period@duration to match the new duration.

5.13.3. Explicit addressing

Note: This addressing mode is sometimes called "SegmentTemplate with SegmentTimeline" in other
documents.

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

Figure 28 Explicit addressing uses a segment template that is combined with explicitly defined time spans for each media
segment in order to reference media segments, either by start time or by sequence number.

The MPD SHALL contain a SegmentTemplate/SegmentTimeline element, containing a set of segment references,
which satisfies the requirements defined in this document. The segment references exist as a sequence of S
elements, each of which references one or more media segments with start time S@t and duration S@d timescale
units on the sample timeline. The SegmentTemplate@duration attribute SHALL NOT be present.

To enable concise segment reference definitions, an S element may represent a repeating segment reference that
indicates a number of repeated consecutive media segments with the same duration. The value of S@r SHALL
indicate the number of additional consecutive media segments that exist.

The start time of a media segment is calculated from the start time and duration of the previous media segment if not
specified by S@t. There SHALL NOT be any gaps or overlap between media segments.

The value of S@r is nonnegative, except for the last S element which MAY have a negative value in S@r, indicating
that the repeated segment references continue indefinitely up to a media segment that either ends at or overlaps the
period end point.

Updates to a dynamic MPD MAY add more S elements, remove expired S elements, increment
SegmentTemplate@startNumber, add the S@t attribute to the first S element or increase the value of S@r on the last S
element but SHALL NOT otherwise modify existing S elements.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments, using
either the $Time$ or $Number$ template variable to unique identify media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1). The S@n attribute SHALL NOT be used - segment numbers form a
continuous sequence starting with SegmentTemplate@startNumber.

Note: Only additional segment references are counted, so S@r=5 indicates a total of 6 consecutive media
segments with the same duration.

EXAMPLE 4
Below is an example of common usage of explicit addressing.

The example defines 225 media segments starting at position 900 on the sample timeline and lasting for a total
of 900.225 seconds. The period ends at 900 seconds, so the last 0.225 seconds of content is clipped (out of
bounds samples may also simply be omitted from the last media segment). The period starts at position 900
which matches the start position of the first media segment found at the relative URL video/900.m4s.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="900" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within.

For representations that use explicit addressing, perform the following adjustments to set a new period start point:

EXAMPLE 5
Below is an example of explicit addressing used in a scenario where different media segments have different
durations (e.g. due to encoder limitations).

The example defines a sequence of 11 media segments starting at position 120 on the sample timeline and
lasting for a total of 95520 units at a timescale of 1000 units per second (which results in 95.52 seconds of data).
The period starts at position 810, which is within the first media segment, found at the relative URL
video/120.m4s. The fifth media segment repeats once, resulting in a sixth media segment with the same
duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period>
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="810"
 media="video/$Time$.m4s" initialization="video/init.mp4">
 <SegmentTimeline>
 <S t="120" d="8520"/>
 <S d="8640"/>
 <S d="8600"/>
 <S d="8680"/>
 <S d="9360" r="1"/>
 <S d="8480"/>
 <S d="9080"/>
 <S d="6440"/>
 <S d="10000"/>
 <S d="8360"/>
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.13.3.1. Moving the period start point (explicit addressing)

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. Update Period@duration to match the new duration.

3. Remove any unnecessary segment references.

4. If using the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

Note: See § 5.4 Representations and § 5.9.5.2 Removing content from the MPD to understand the constraints
that apply to segment reference removal.

A representation that uses simple addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the nominal time span covered by each media segment
described in the MPD.

Simple addressing defines the nominal time span of each media segment in the MPD. The true time
span covered by samples within the media segment can be slightly different than the nominal time

span. See § 5.13.4.1 Inaccuracy in media segment timing when using simple addressing.

Clauses in section only apply to representations that use simple addressing.

Figure 29 Simple addressing uses a segment template that is combined with approximate first media segment timing
information and an average media segment duration in order to reference media segments, either by start time or by sequence

number.

The SegmentTemplate@duration attribute SHALL define the nominal duration of a media segment in timescale units.

The set of segment references SHALL consist of the first media segment starting exactly at the period start point and
all other media segments following in a consecutive series of equal time spans of SegmentTemplate@duration
timescale units, ending with a media segment that ends at or overlaps the period end time.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments, using
either the $Time$ or $Number$ template variable to uniquely identify media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1).

5.13.4. Simple addressing

ISSUE 5 Once we have a specific @earliestPresentationTime proposal submitted to MPEG we need to
update this section to match. See #245. This is now done in [MPEGDASH] 4th edition - need to synchronize this
text.

Note: This addressing mode is sometimes called "SegmentTemplate without SegmentTimeline" in other
documents.

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/245

When using simple addressing, the samples contained in a media segment MAY cover a different time span on the
sample timeline than what is indicated by the nominal timing in the MPD, as long as no constraints defined in this
document are violated by this deviation.

Figure 30 Simple addressing relaxes the requirement on media segment contents matching the sample timeline. Red boxes
indicate samples.

The allowed deviation is defined as the maximum offset between the edges of the nominal time span (as defined by
the MPD) and the edges of the true time span (as defined by the contents of the media segment). The deviation is
evaluated separately for each edge.

This allowed deviation does not relax any requirements that do not explicitly define an exception. For
example, periods must still be covered with samples for their entire duration, which constrains the

flexibility allowed for the first and last media segment in a period.

The deviation SHALL be no more than 50% of the nominal media segment duration and MAY be in either direction.

EXAMPLE 6
Below is an example of common usage of simple addressing.

The example defines a sample timeline with a timescale of 1000 units per second, with the period starting at
position 900. The average duration of a media segment is 4001. Media segment numbering starts at 800, so the
first media segment is found at the relative URL video/800.m4s. The sequence of media segments continues to
the end of the period, which is 900 seconds long, making for a total of 225 defined segment references.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.13.4.1. Inaccuracy in media segment timing when using simple addressing

Note: This results in a maximum true duration of 200% (+50% outward extension on both edges) and a minimum
true duration of 1 sample (-50% inward from both edges would result in 0 duration but empty media segments are
not allowed).

Allowing inaccurate timing is intended to enable reasoning on the sample timeline using average values for media
segment timing. If the addressing data says that a media segment contains 4 seconds of data on average, a client
can predict with reasonable accuracy which samples are found in which media segments, while at the same time the
service is not required to publish per-segment timing data in the MPD. It is expected that the content is packaged
with this contraint in mind (i.e. every segment cannot be inaccurate in the same direction - a shorter segment now
implies a longer segment in the future to make up for it).

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural" start point of the representations within.

Simple addressing is challenging to use in such scenarios. You SHOULD convert simple addressing
representations to use explicit addressing before adjusting the period start point or splitting a period. See § 5.13.4.3
Converting simple addressing to explicit addressing.

The rest of this chapter provides instructions for situations where you choose not to convert to explicit addressing.

To move the period start point, for representations that use simple addressing:

Finding a suitable new start point that conforms to the above requirements can be very difficult. If inaccurate timing is
used, it may be altogether impossible. This is a limitation of simple addressing.

Having ensured conformance to the above requirements for the new period start point, perform the following
adjustments:

EXAMPLE 7
Consider a media segment with a nominal start time of 8 seconds from period start and a nominal duration of 4
seconds, within a period of unlimited duration.

The following are all valid contents for such a media segment:

Near period boundaries, all the constraints of timing and addressing must still be respected! Consider a media
segment with a nominal start time of 0 seconds from period start and a nominal duration of 4 seconds. If such a
media segment contained samples from 1 to 5 seconds (offset of 1 second away from zero point at both ends,
which is within acceptable limits) it would be non-conforming because of the requirement in § 5.7 Media
segments that the first media segment contain a media sample that starts at or overlaps the period start point.
This severely limits the usefulness of simple addressing.

samples from 8 to 12 seconds (perfect accuracy)

samples from 6 to 14 seconds (maximally large segment allowed, 50% increase from both ends)

samples from 9.9 to 10 seconds (near-minimally small segment; while we allow a 50% decrease from both
ends, potentially resulting in zero duration, every segment must still contain at least one sample)

samples from 6 to 10 seconds (maximal offset toward zero point at both ends)

samples from 10 to 14 seconds (maximal offset away from zero point at both ends)

5.13.4.2. Moving the period start point (simple addressing)

Every simple addressing representation in the period must contain a media segment that starts exactly at the
new period start point.

Media segments starting at the new period start point must contain a sample that starts at or overlaps the new
period start point.

Note: If you are splitting a period, also keep in mind the requirements on period end point sample alignment for
the period that remains before the split point.

It may sometimes be desirable to convert a presentation from simple addressing to explicit addressing. This chapter
provides an algorithm to do this.

Simple addressing allows for inaccuracy in media segment timing. No inaccuracy is allowed by
explicit addressing. The mechanism of conversion described here is only valid when there is no

inaccuracy. If the nominal time spans in original the MPD differ from the true time spans of the media
segments, re-package the content from scratch using explicit addressing instead of converting.

To perform the conversion, execute the following steps:

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. If using the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

3. Update Period@duration to match the new duration.

5.13.4.3. Converting simple addressing to explicit addressing

1. Calculate the number of media segments in the representation as SegmentCount =
Ceil(AsSeconds(Period@duration) / (SegmentTemplate@duration / SegmentTemplate@timescale)).

2. Update the MPD.

1. Add a single SegmentTemplate/SegmentTimeline element.

2. Add a single SegmentTimeline/S element.

3. Set S@t to equal SegmentTemplate@presentationTimeOffset.

4. Set S@d to equal SegmentTemplate@duration.

5. Remove SegmentTemplate@duration.

6. Set S@r to SegmentCount - 1.

[ECMASCRIPT] is unable to accurately represent numeric values greater than 253 using built-in types. Therefore,
interoperable services cannot use such values.

All timescales are start times used in a DASH presentations SHALL be sufficiently small that no timecode value
exceeding 253 will be encountered, even during the publishing of long-lasting live services.

All units expressed in MPD fields of datatype xs:duration SHALL be treated as fixed size:

EXAMPLE 8
Below is an example of a simple addressing representation before conversion.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 duration="4001" startNumber="800" />
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

As part of the conversion, we calculate SegmentCount = Ceil(900 / (4001 / 1000)) = 225.

After conversion, we arrive at the following result.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
 <Period duration="PT900S">
 <AdaptationSet>
 <Representation>
 <SegmentTemplate timescale="1000" presentationTimeOffset="900"
 media="video/$Number$.m4s" initialization="video/init.mp4"
 startNumber="800">
 <SegmentTimeline>
 <S t="900" d="4001" r="224" />
 </SegmentTimeline>
 </SegmentTemplate>
 </Representation>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - the above are not fully
functional MPD files.

5.14. Large timescales and time values

Note: This may require the use of 64-bit fields, although the values must still be limited to under 253.

5.15. Representing durations in XML

60S = 1M (minute)

60M = 1H

MPD fields having datatype xs:duration SHALL NOT use the year and month units and SHOULD be expressed as
a count of seconds, without using any of the larger units.

See [MPEGDASH]

See [MPEGCMAF]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and
notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text
with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

24H = 1D

30D = 1M (month)

12M = 1Y

6. Externally defined terms

adaptation set

CMAF track file

index segment

initialization segment

supplemental property descriptor

Conformance

EXAMPLE 9
This is an example of an informative example.

Note, this is an informative note.

Index

Terms defined by this specification

adaptation set, in §6

addressing modes, in §5.13

availability window, in §5.9.2

available, in §5.9.2

CMAF track file, in §6

ETSI TS 103 285 V1.2.1 (2018-03): Digital Video Broadcasting (DVB); MPEG-DASH Profile for Transport of
ISO BMFF Based DVB Services over IP Based Networks. March 2018. Published. URL:
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf

Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format. December
2015. International Standard. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

dynamic MPD, in §5.2

effective time shift buffer, in §5.9.4

explicit addressing, in §5.13.3

indexed addressing, in §5.13.1

index segment, in §6

initialization segment, in §6

IOP, in §1

Media Presentation, in §5.2

media segment, in §5.7

MPD, in §4.2

MPD refreshes, in §5.9.6

MPD timeline, in §5.2

MPD validity duration, in §5.9

period-connected, in §5.8

periods, in §5.3

presentation delay, in §5.9.4

representation, in §5.4

sample timeline, in §5.5

segment availability times, in §5.9.2

segment end point, in §5.9.2

segment references, in §5.4

segments, in §5.4

simple addressing, in §5.13.4

static MPD, in §5.2

supplemental property descriptor, in §6

timescale, in §5.5

timescale units, in §5.5

time shift, in §5.9.3

time shift buffer, in §5.9.3

unnecessary segment reference, in §5.4

References

Normative References

[DVB-DASH]

[ISOBMFF]

[MPEG2TS]

http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

Information technology — Generic coding of moving pictures and associated audio information — Part 1:
Systems. June 2019. Published. URL: https://www.iso.org/standard/75928.html

Information technology — Multimedia application format (MPEG-A) — Part 19: Common media application
format (CMAF) for segmented media. Under development. URL: https://www.iso.org/standard/79106.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats. August 2019. Published. URL: https://www.iso.org/standard/75485.html

N18641 WD of ISO/IEC 23009-1 4th edition AMD 1 Client event and timed metadata processing.

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests. June 2014.
Proposed Standard. URL: https://httpwg.org/specs/rfc7232.html

R. Fielding, Ed.; Y. Lafon, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Range Requests. June
2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7233.html

ATSC Standard: A/300:2017 “ATSC3.0 System”. URL: https://https://www.atsc.org/wp-
content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf

ECMAScript Language Specification. URL: https://tc39.es/ecma262/

David Dorwin; et al. Encrypted Media Extensions. 18 September 2017. REC. URL:
https://www.w3.org/TR/encrypted-media/

Matthew Wolenetz; et al. Media Source Extensions™. 17 November 2016. REC. URL:
https://www.w3.org/TR/media-source/

[MPEGCMAF]

[MPEGDASH]

[MPEGDASHCMAFPROFILE]

[RFC2119]

[RFC7232]

[RFC7233]

Informative References

[ATSC3]

[ECMASCRIPT]

[ENCRYPTED-MEDIA]

[MEDIA-SOURCE]

Issues Index

ISSUE 1 We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services. ↵

ISSUE 2 What about period connectivity? #238 ↵

ISSUE 3 Update to match [MPEGDASH] 4th edition. ↵

ISSUE 4 We need to clarify how to determine the right value for SAP_type. #235 ↵

ISSUE 5 Once we have a specific @earliestPresentationTime proposal submitted to MPEG we need to
update this section to match. See #245. This is now done in [MPEGDASH] 4th edition - need to synchronize this
text. ↵

↑
→Loading [MathJax]/extensions/tex2jax.js

https://www.iso.org/standard/75928.html
https://www.iso.org/standard/75928.html
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/79106.html
https://www.iso.org/standard/75485.html
https://www.iso.org/standard/75485.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7233.html
https://httpwg.org/specs/rfc7233.html
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/media-source/
https://www.w3.org/TR/media-source/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/238
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/245

	DASH-IF implementation guidelines: the DASH timing model
	Commit Snapshot, 3 December 2019
	Table of Contents
	1. Purpose
	2. Interpretation
	3. Disclaimer
	4. DASH and related standards
	4.1. Relationship to the previous versions of this document
	4.2. Structure of a DASH presentation

	5. Timing model
	5.1. Conformance requirements
	5.2. MPD Timeline
	5.3. Periods
	5.4. Representations
	5.5. Sample timeline
	5.6. Clock drift is forbidden
	5.7. Media segments
	5.7.1. Media segment duration deviation
	5.7.2. Segments must be aligned

	5.8. Period connectivity
	5.8.1. Period continuity

	5.9. Dynamic MPDs
	5.9.1. Real time clock synchronization
	5.9.2. Availability
	5.9.3. Time shift buffer
	5.9.4. Presentation delay
	5.9.5. MPD updates
	5.9.6. MPD refreshes

	5.10. Timing of stand-alone IMSC1 and WebVTT text files
	5.11. Forbidden techniques
	5.12. Examples
	5.12.1. Offer content with imperfectly aligned tracks
	5.12.2. Split a period
	5.12.3. Change the default_KID

	5.13. Segment addressing modes
	5.13.1. Indexed addressing
	5.13.2. Structure of the index segment
	5.13.3. Explicit addressing
	5.13.4. Simple addressing

	5.14. Large timescales and time values
	5.15. Representing durations in XML

	6. Externally defined terms
	Conformance
	Index
	Terms defined by this specification

	References
	Normative References
	Informative References

	Issues Index

