
DASH-IF implementation guidelines: content
protection and security

https://dashif-documents.azurewebsites.net/Guidelines-Security/master/Guidelines-Security.html

GitHub
Inline In Spec

DASH Industry Forum

Table of Contents

Commit Snapshot, 4 March 2020

This version:

Issue Tracking:

Editors:

1 Purpose

2 Scope

3 Interpretation

4 Disclaimer

5 Core concepts of content protection and security

6 Client reference architecture for encrypted content playback

7 Content encryption and DRM
7.1 Robustness
7.2 W3C Encrypted Media Extensions

8 Content protection constraints for CMAF
8.1 Content protection data in CMAF containers

9 Encryption and DRM signaling in the MPD
9.1 Signaling presence of encrypted content
9.2 default_KID defines the scope of DRM system interactions
9.2.1 default_KID in hierarchical/derived/variant key scenarios

9.3 Providing default DRM system configuration
9.4 Delivering updates to DRM system internal state

10 DASH-IF interoperable license request model
10.1 Proof of authorization
10.1.1 Obtaining authorization tokens
10.1.2 Issuing authorization tokens

https://dashif.org/
https://dashif-documents.azurewebsites.net/Guidelines-Security/master/Guidelines-Security.html
https://github.com/Dash-Industry-Forum/Guidelines-Security/issues

The guidelines defined in this document support the creation of interoperable services for high-quality video
distribution based on MPEG-DASH and related standards. These guidelines are provided in order to address
DASH-IF members' needs and industry best practices. The guidelines support the implementation of conforming
service offerings as well as DASH client implementations.

While alternative interpretations may be equally valid in terms of standards conformance, services and clients
created following the guidelines defined in this document can be expected to exhibit highly interoperable behavior
between different implementations.

This document is an update to the DASH-IF IOP Guidelines version 4.3. The scope remains the same, giving
guidelines for interoperable behaviors of clients in front of well formed encrypted content. This means:

10.1.3 Attaching authorization tokens to license requests

10.2 Problem signaling and handling
10.2.1 Problem type: not authorized to access content
10.2.2 Problem type: insufficient proof of authorization

10.3 Possible deployment architectures
10.4 Passing a content ID to services

11 DRM workflows in DASH clients
11.1 Capability detection
11.2 Selecting the DRM system
11.3 Activating the DRM system
11.3.1 Handling unavailability of content keys

11.4 Content protection policies
11.5 Performing license requests
11.5.1 Efficient license acquisition

12 Periodic re-authorization

13 Controlling access rights with a key hierarchy

14 Use of W3C Clear Key with DASH

15 XML Schema for DASH-IF MPD extensions

16 HTTPS and DASH

Conformance

Index
Terms defined by this specification

References
Normative References
Informative References

Issues Index

1. Purpose

2. Scope

Updated encrypted content constraints for supporting CMAF. This includes the addition of the cbcs scheme

In addition, this document:

Requirements in this document describe service and client behaviors that DASH-IF considers interoperable.

If a service provider follows these requirements in a published DASH service, the published DASH service is likely
to experience successful playback on a wide variety of clients and exhibit graceful degradation when a client does
not support all features used by the service.

If a client implementer follows the client-oriented requirements described in this document, the DASH client will
play content conforming to this document provided that the client device media platform supports all features used by
a particular DASH service (e.g. the codecs and DRM systems).

This document uses statements of fact when describing normative requirements defined in referenced specifications
such as [DASH] and [CMAF]. References are typically provided to indicate where the requirements are defined.

[RFC2119] statements (e.g. "SHALL", "SHOULD" and "MAY") are used when this document defines a new
requirement or further constrains a requirement from a referenced document.

All DASH presentations are assumed to be conforming to these guidelines. A service MAY explicitly signal itself as
conforming by including the string https://dashif.org/guidelines/ in MPD@profiles.

There is no strict backward compatibility with previous versions - best practices change over time and what was
once considered sensible may be replaced by a superior approach later on. Therefore, clients and services that
were conforming to version N of this document are not guaranteed to conform to version N+1.

support and recommendation for encrypting content when available using both cbcs and cenc protection
schemes. Note that compared to DASH-IF IOP 4.3, there are no changes in the recommendations for using
default_KID and pssh elements.

Added discussions on compliance and robustness rules and their impact on the choices of the DRM client to
instantiate.

Clarified periodic reauthorization mechanisms, separating the topic of key hierarchy from periodic
reauthentication - the two are now separate chapters.

Clarified the client reference architecture which is an MSE/EME type of player, more precisely connecting
between the DASH/DASH-IF/CMAF content format specifications and W3C EME.

Introduces the Interoperable license request model that describes how players take content and consume it
in ways that make sense on a platform that supports EME. From the Platform capabilities discovery and DRM
selection to the license request protocol, this optional request model allows a player to obtain authorization
tokens that can be used for retrieving licenses and content keys from a license server for rendering content. Any
processing step in the proposed model can be redefined by the application logic.

Introduces DASH-IF XML schema where two elements are defined for supporting the license request model.
These elements are namely the laurl (license acquisition server URL) and authzurl (Authorization server
URL).

3. Interpretation

EXAMPLE 1
Statement of fact:

New or more constrained requirement:

A DASH presentation is a sequence of consecutive non-overlapping periods [DASH].

Segments SHALL NOT use the MPEG-TS container format.

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of
intellectual property rights, including patents and patent applications owned or controlled by any of the authors or
developers of this document. No patent license, either implied or express, is granted to you by this document.
DASH-IF has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights
and obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the
DASH-IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable
law, this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties.
Those third party documents and technologies may be subject to third party rules and licensing terms. No intellectual
property license, either implied or express, to any third party material is granted to you by this document or DASH-IF.
DASH-IF makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance material is provided, are
only published as a candidate technologies, and may be removed if no test material is provided before releasing a
new version of this guidelines document. For the availability of test material, please check http://www.dashif.org.

DASH-IF provides guidelines for using multiple DRM systems to access a DASH presentation by adding encryption
signaling and DRM system configuration to DASH content encrypted in conformance to Common Encryption
[CENC]. In addition to content authoring guidelines, DASH-IF specifies interoperable workflows for DASH client
interactions with DRM systems, platform APIs and external services involved in content protection interactions.

Figure 1 A DRM system cooperates with the device’s media platform to enable playback of encrypted content while protecting
the decrypted samples and the content key against potential attacks. The DASH-IF implementation guidelines focus on the

signaling in the DASH presentation and the interactions of the DASH client with other components.

This document does not define any DRM system. DASH-IF maintains a registry of DRM system identifiers on
dashif.org.

4. Disclaimer

5. Core concepts of content protection and security

https://dashif.org/identifiers/content_protection/

Common Encryption [CENC] specifies several protection schemes which can be applied by a scrambling system
and used by different DRM systems. The same encrypted DASH presentation can be decrypted by different DRM
systems if a DASH client is provided the DRM system configuration for each DRM system, either in the MPD or at
runtime.

A content key is a 128-bit key used by a DRM system to make content available for playback. It is identified by a
UUID-format string called default_KID (or sometimes simply KID). A content key and its identifier are shared
between all DRM systems, whereas the mechanisms used for key acquisition and content protection are largely
DRM system specific. Different DASH adaptation sets are often protected by different content keys.

A license is a data structure in a DRM system specific format that contains one or more content keys and
associates them with a policy that governs the usage of the content keys (e.g. expiration time). The encapsulated
content keys are typically encrypted and only readable by the DRM system.

Different software architectural components are involved in playback of encrypted content. The exact nature depends
on the specific implementation. A high-level reference architecture is described here.

Figure 2 Reference architecture for encrypted content playback.

The media platform provides one or more APIs that allow the device’s media playback and DRM capabilities to be
used by a DASH client. The DASH client is typically a library included in an app. On some device types, the DASH
client may be a part of the media platform.

This document assumes that the media platform exposes its encrypted content playback features via an API similar
to W3C Encrypted Media Extensions (EME) [encrypted-media]. The technical nature of the API may be different but
EME-equivalent functionality is expected.

The media platform often implements at least one DRM system. Additional DRM system implementations can be
included as libraries in the app.

The guidelines in this document define recommended workflows and default behavior for a generic DASH client
implementation that performs playback of encrypted content. In many scenarios, the default behavior is sufficient.
When deviation from the default behavior is desired, solution-specific logic and configuration can be provided

EXAMPLE 2
Example default_KID in string format: 72c3ed2c-7a5f-4aad-902f-cbef1efe89a9

6. Client reference architecture for encrypted content playback

by the app. Extension points are explicitly defined in the workflows at points where solution-specific decisions are
most appropriate.

A DASH presentation MAY provide some or all adaptation sets in encrypted form, requiring the use of a DRM
system to decrypt the content for playback. The duty of a DRM system is to decrypt content while preventing
disclosure of the content key and misuse of the decrypted content (e.g. recording via screen capture software).

In a DASH presentation, every representation in an adaptation set SHALL be protected using the same content key
(identified by the same default_KID).

This means that if representations use different content keys, they must be in different adaptation sets, even if they
would otherwise (were they not encrypted) belong to the same adaptation set. A urn:mpeg:dash:adaptation-set-
switching:2016 supplemental property descriptor ([DASH] 5.3.3.5) SHALL be used to signal that such adaptation
sets are suitable for switching.

Encrypted DASH content SHALL use either the cenc or the cbcs protection scheme defined in [CENC]. cenc and
cbcs are two mutually exclusive protection schemes. DASH content encrypted according to the cenc protection
scheme cannot be decrypted by a DRM system supporting only the cbcs protection scheme and vice versa.

Some DRM system implementations support both protection schemes. Even when this is the case, clients SHALL
NOT concurrently consume encrypted content that uses different protection schemes.

Representations in the same adaptation set SHALL use the same protection scheme. Representations in different
adaptation sets MAY use different protection schemes. If both protection schemes are used in the same DASH
period, all encrypted representations in that period SHALL be provided using both protection schemes. That is, the
only permissible scenario for using both protection schemes together is to offer them as equal alternatives to target
DASH clients with different capabilities.

Representations that contain the same media content using different protection schemes SHALL use different
content keys. This protects against some cryptographic attacks [MSPR-EncryptionModes].

DRM systems define rules that govern how they can be implemented. These rules can define different robustness
levels which are typically used to differentiate implementations based on their resistance to attacks. The set of
robustness levels, their names and the constraints that apply are all specific to each DRM system.

7. Content encryption and DRM

7.1. Robustness

EXAMPLE 3

A hypothetical DRM system might define the following robustness levels:

High - All cryptographic operations are performed on a separate CPU not accessible to the device’s primary
operating system (often called a trusted execution environment). Decrypted data only exists in a memory
region not accessible to the device’s primary operating system (often called a secure media path).

Medium - All cryptographic operations are performed on a separate CPU not accessible to the device’s
primary operating system. Decrypted data may be passed to the primary operating system’s media platform
APIs.

Low - All operations are performed in software that can be inspected and modified by the user. Obfuscation
must be used to protect against analysis.

None - For development only. Implementation does not resist attacks.

Policy associated with content can require a DRM system implementation to conform to a certain robustness level,
thereby ensuring that valuable content does not get presented on potentially vulnerable implementations. This policy
can be enforced on different levels, depending on the DRM system:

Multiple implementations of a DRM system may be available to a DASH client, potentially at different robustness
levels. The DASH client must choose at media load time which DRM system implementation to use. However, the
required robustness level may be different for different device types and is not expressed in the MPD. This decision
is a matter of policy and is impossible for a DASH client to determine on its own. Therefore, solution-specific logic
and configuration must inform the DASH client of the correct choice.

A DASH client SHALL enable solution-specific logic and configuration to specify the robustness level of the DRM
system implementation to be used. Depending on which DRM system is used, this can be implemented by:

Whereas the DRM signaling in DASH deals with DRM systems, EME deals with key systems. While similar in
concept, they are not always the same thing. A single DRM system may be implemented on a single device by
multiple different key systems, with different codec compatibility and functionality, potentially at different robustness
levels.

Even if multiple variants are available, a DASH client SHOULD map each DRM system to a single key system. The
default key system SHOULD be the one the DASH client expects to offer greatest compatibility with content
(potentially at a low robustness level). The DASH client SHOULD allow solution-specific logic and configuration to
override the key system chosen by default (e.g. to force the use of a high-robustness variant).

The structure of content protection related information in the CMAF containers used by DASH is largely specified by
[CMAF] and [CENC] (in particular section 8). This chapter outlines some additional requirements to ensure
interoperable behavior of DASH clients and services.

1. A license server may refuse to provide content keys to implementations with unacceptable robustness levels.

2. The DRM system may refuse to use content keys whose license requires a higher robustness level than the
implementation provides.

1. Changing the mapping of DRM system to key system in EME-based implementations (see § 7.2 W3C
Encrypted Media Extensions).

2. Specifying a minimum robustness level during capability detection (see § 11.1 Capability detection).

7.2. W3C Encrypted Media Extensions

EXAMPLE 4

A device may implement the "ExampleDRM" DRM system as a number of key systems:

The key system "ExampleDRMvariant1" may support playback of encrypted H.264 and H.265 content at up
to 1080p resolution with "low" robustness level.

The key system "ExampleDRMvariant2" may support playback of encrypted H.264 content at up to 4K
resolution with "high" robustness level.

The key system "ExampleDRMvariant3" may support playback of encrypted H.265 content at up to 4K
resolution with "high" robustness level.

8. Content protection constraints for CMAF

Note: This document uses the cenc: prefix to reference the XML namespace urn:mpeg:cenc:2013 [CENC].

Initialization segments SHOULD NOT contain any moov/pssh box ([CMAF] 7.4.3) and DASH clients MAY ignore
such boxes when encountered. Instead, pssh boxes required for DRM system initialization are part of the DRM
system configuration and SHOULD be placed in the MPD as cenc:pssh elements in DRM system specific
ContentProtection descriptors.

Protected content MAY be published without any pssh boxes in both the MPD and media segments. All DRM system
configuration can be provided at runtime, including the pssh box data. See also § 9.3 Providing default DRM system
configuration.

Media segments MAY contain moof/pssh boxes ([CMAF] 7.4.3) to provide updates to DRM system internal state
(e.g. to supply new leaf keys in a key hierarchy). See § 9.2.1 default_KID in hierarchical/derived/variant key
scenarios for an example.

This chapter describes the structure of content protection data in CMAF containers used to provide encrypted
content in a DASH presentation, summarizing the requirements defined by [ISOBMFF], [DASH], [CENC], [CMAF]
and other parts of DASH-IF implementation guidelines.

DASH initialization segments contain:

DASH media segments are composed of a single CMAF fragment that contains:

Note: Placing the pssh boxes in the MPD has become common for purposes of operational agility - it is often
easier to update MPD files than rewrite initialization segments when the default DRM system configuration needs
to be updated. Furthermore, in some scenarios the appropriate set of pssh boxes is not known when the
initialization segment is created.

Note: These state updates may be transparent to a DASH client on some media platforms that intercept the
moof/pssh boxes and supply them directly to the active DRM system; on other media platforms, the DASH client
may need to extract and forward the moof/pssh boxes to the DRM system.

8.1. Content protection data in CMAF containers

Zero or more moov/pssh "Protection System Specific Header" boxes ([CENC] 8.1) which provide DRM system
initialization data in DRM system specific format. This usage is deprecated in favor of providing this data in the
MPD. If both are present, the value in the MPD is used. See § 9.3 Providing default DRM system configuration.

Exactly one moov/trak/mdia/minf/stbl/stsd/sinf/schm "Scheme Type" box ([ISOBMFF] 8.12.5) identifying
the protection scheme. See [CENC] section 4.

Exactly one moov/trak/mdia/minf/stbl/stsd/sinf/schi/tenc "Track Encryption" box ([CENC] 8.2) which
contains default encryption parameters for samples. These default parameters may be overridden in media
segments (see below).

Exactly one moof/traf/senc "Sample Encryption" box ([CENC] 7.2) which stores initialization vectors (IVs) and,
optionally, subsample encryption ranges for samples in the same CMAF fragment.

Zero or one moof/traf/saiz "Sample Auxiliary Information Size" boxes ([ISOBMFF] 8.7.8) which references the
sizes of the per-sample data stored in the moof/traf/senc box ([CMAF] 8.2.2 and [CENC] section 7).

Omitted if the parameters provided by the senc box are identical for all samples in the CMAF fragment.

Zero or one moof/traf/saio "Sample Auxiliary Information Offset" boxes ([ISOBMFF] 8.7.9) which references
the sizes of the per-sample data stored in the moof/traf/senc box ([CMAF] 8.2.2 and [CENC] section 7).

Omitted if the parameters provided by the senc box are identical for all samples in the CMAF fragment.

Zero or more moof/pssh "Protection System Specific Header" boxes ([CENC] 8.1) which provide transparent
updates to DRM system internal state. See § 9.4 Delivering updates to DRM system internal state.

A key hierarchy is implemented by listing the default_KID in the tenc box of the initialization segment (identifying
the root key) and then overriding the key identifier in the sgpd boxes of media segments (identifying the leaf keys that
apply to each media segment). The moof/pssh box is used to deliver/unlock new leaf keys and provide the
associated license policy.

When using CMAF chunks for delivery, each CMAF fragment may be split into multiple CMAF chunks. If the CMAF
fragment contained any moof/pssh boxes, copies of these boxes SHALL be present in each CMAF chunk that starts
with an independent media sample.

A DASH client needs to recognize encrypted content and activate a suitable DRM system, configuring it to decrypt
content. The MPD informs a DASH client of the protection scheme used to protect content, identifies the content
keys that are used and optionally provides the default DRM system configuration for a set of DRM systems.

A DRM system configuration is the complete data set required for a DASH client to activate a single DRM system
and configure it to decrypt content using a single content key. It is supplied by a combination of XML elements in
the MPD and/or solution-specific logic and configuration. A DRM system configuration often contains:

The exact set of values required for successful DRM workflow execution depends on the requirements of the
selected DRM system (e.g. what kind of initialization data it can accept) and the mechanism used for content key
acquisition (e.g. the DASH-IF interoperable license request model). By default, a DASH client SHOULD assume that
a DRM system accepts initialization data in pssh format and that the DASH-IF interoperable license request model
is used for content key acquisition.

When configuring a DRM system to decrypt content using multiple content keys, a distinct DRM system configuration
is associated with each content key. Concurrent use of multiple DRM systems is not an interoperable scenario.

For each sample group, exactly one moof/traf/sgpd "Sample Group Description" box ([ISOBMFF] 8.9.3 and [
CENC] section 6) which contains overrides for encryption parameters defined in the tenc box.

Omitted if no parameters are overridden.

For each sample grouping type (see [ISOBMFF], typically one), exactly one moof/traf/sbgp "Sample to Group"
box ([ISOBMFF] 8.9.2 and [CENC] section 6) which associates samples with sample groups.

Omitted if no parameters are overridden.

Note: While DASH only requires the presence of moof/pssh in the first CMAF chunk, the requirement is more
extensive in the interest of HLS interoperability [HLS-LowLatency].

9. Encryption and DRM signaling in the MPD

DRM system initialization data in the form of a DRM system specific pssh box (as defined in [CENC]).

DRM system initialization data in some other DRM system specific form (e.g. keyids JSON structure used by
W3C Clear Key)

The used protection scheme (cenc or cbcs)

default_KID that identifies the content key

License server URL

Authorization service URL

Note: In theory, it is possible for the DRM system initialization data to be the same for different content keys. In
practice, the default_KID is often included in the initialization data so this is unlikely. Nevertheless, DASH clients
cannot assume that using equal initialization data implies anything about equality of the DRM system
configuration or the content key - the default_KID is the factor identifying the scope in which a single content key
is to be used. See § 9.2 default_KID defines the scope of DRM system interactions.

The presence of a ContentProtection descriptor with schemeIdUri="urn:mpeg:dash:mp4protection:2011" on an
adaptation set informs a DASH client that all representations in the adaptation set are encrypted in conformance to
Common Encryption ([DASH] 5.8.4.1, 5.8.5.2 and [CENC] 11) and require a DRM system to provide access.

This descriptor is present for all encrypted content ([DASH] 5.8.4.1). It SHALL be defined on the adaptation set level.
The value attribute SHALL be either cenc or cbcs, matching the used protection scheme. The cenc:default_KID
attribute SHALL be present and have a value matching the default_KID in the tenc box. The value SHALL be
expressed in lowercase UUID string notation.

A DASH client interacts with one or more DRM systems during playback in order to control the decryption of content.
Some of the most important interactions are:

The scope of each of these interactions is defined by the default_KID. Each distinct default_KID identifies exactly
one content key. The impact of this is further outlined in § 11 DRM workflows in DASH clients.

When activating a DRM system, a DASH client SHALL determine the required set of content keys based on the
default_KID values of adaptation sets selected for playback. This set of content keys is used to activate the DRM
system, after which zero or more of the content keys from this set are available for playback.

Clients SHALL provide all default_KIDs of the selected adaptation sets to the DRM system during activation and
SHALL NOT assume that activating a DRM system with one content key will implicitly enable the use of any other
content key.

The DASH client and/or DRM system MAY batch license requests for different default_KIDs (and the respective
responses) into a single transaction (for example, to reduce the chattiness of license acquisition traffic).

While it is common that default_KID identifies the actual content key used for encryption, a DRM system MAY make
use of other keys in addition to the one signalled by the default_KID value but this SHALL be transparent to the

9.1. Signaling presence of encrypted content

EXAMPLE 5
Signaling an adaptation set encrypted using the cbcs scheme and with a content key identified by 34e5db32-
8625-47cd-ba06-68fca0655a72.

<ContentProtection
 schemeIdUri="urn:mpeg:dash:mp4protection:2011"
 value="cbcs"
 cenc:default_KID="34e5db32-8625-47cd-ba06-68fca0655a72" />

9.2. default_KID defines the scope of DRM system interactions

Activating a DRM system to play back content protected with a specific set of content keys.

Communicating with the DRM system to make content keys available for use, executing license requests as
needed.

Note: An occasionally encountered anti-pattern is to activate a DRM system for only key X but to configure the
license server to always provide both keys X and Y when key X is requested. This is not inteoperable behavior.

Note: This optimization might require support from platform APIs and/or DRM system specific logic from the
DASH client, as a batching mechanism is not yet a standard part of DRM related platform APIs.

9.2.1. default_KID in hierarchical/derived/variant key scenarios

client with only the default_KID being used in interactions between the DASH client and the DRM system. See § 13
Controlling access rights with a key hierarchy.

Figure 3 In a hierarchical key scenario, default_KID references the root key and only the sample group descriptions
reference the leaf keys.

In a hierarchical key scenario, default_KID identifies the root key, not the leaf key used to encrypt media samples,
and the handling of leaf keys is not exposed to a DASH client. As far as a DASH client knows, there is always only
one content key identified by default_KID.

This logic applies to all scenarios that make use of additional keys, regardless of whether they are based on the key
hierarchy, key derivation or variant key ([iso23001-12]) concepts.

A DASH service SHOULD supply a default DRM system configuration in the MPD for all supported DRM systems in
all encrypted adaptation sets. This enables playback without the need for DASH client customization or additional
client-side configuration. DRM system configuration MAY also be supplied by solution-specific logic and
configuration, replacing or enhancing the defaults provided in the MPD.

Any number of ContentProtection descriptors ([DASH] 5.8.4.1) MAY be present in the MPD to provide DRM
system configuration. These descriptors SHALL be defined on the adaptation set level. The contents MAY be
ignored by the DASH client if overridden by solution-specific logic and configuration - the DRM system configuration
in the MPD simply provides default values known at content authoring time.

A ContentProtection descriptor providing a default DRM system configuration SHALL use
schemeIdUri="urn:uuid:<systemid>" to identify the DRM system, with the <systemid> matching a value in the
DASH-IF system-specific identifier registry. The value attribute of the ContentProtection descriptor SHOULD
contain the DRM system name and version number in a human readable form (for diagnostic purposes).

Each DRM system specific ContentProtection descriptor can contain a mix of XML elements and attributes
defined by [CENC], the DRM system author, DASH-IF or any other party.

For DRM systems initialized by supplying pssh boxes [CENC], the cenc:pssh element SHOULD be present under
the ContentProtection descriptor if the value is known at MPD authoring time. The base64 encoded contents of the

9.3. Providing default DRM system configuration

Note: W3C defines the Clear Key mechanism ([encrypted-media] 9.1), which is a "dummy" DRM system
implementation intended for client and platform development/testing purposes. Understand that Clear Key
does not fulfill the content protection and content key protection duties ordinarily expected from a
DRM system. For more guidelines on Clear Key usage, see § 14 Use of W3C Clear Key with DASH.

https://dashif.org/identifiers/content_protection/

element SHALL be equivalent to a complete pssh box including its length and header fields. See also § 8 Content
protection constraints for CMAF.

DRM systems generally use the concept of license requests as the mechanism for obtaining content keys and
associated usage constraints (see § 11.5 Performing license requests). For DRM systems that use this concept, one
or more dashif:laurl elements SHOULD be present under the ContentProtection descriptor, with the value of the
element being the URL to send license requests to. This URL MAY contain content identifiers.

Multiple mechanisms have historically been used to provide the license server URL in the MPD (e.g. embedding in
the cenc:pssh data or passing by deprecated DRM system specific DASH-IF Laurl elements). A DASH client
SHALL prefer dashif:laurl if multiple data sources for the URL are present in the MPD.

For DRM systems that require proof of authorization to be attached to the license request in a manner conforming to
§ 10 DASH-IF interoperable license request model, one or more dashif:authzurl elements SHOULD be present
under the ContentProtection descriptor, containing the default URL to send authorization requests to (see § 11.5
Performing license requests).

Multiple dashif:laurl or dashif:authzurl elements under the same ContentProtection descriptor define sets of
equivalent alternatives for the DASH client to choose from. A DASH client SHOULD select a random item from the
set every time the value of such an element is used.

The presence of a DRM system specific ContentProtection descriptor is not required in order to activate the DRM
system; these elements are used merely to provide the default DRM system configuration. Empty
ContentProtection descriptors SHOULD NOT be present in an MPD and MAY be ignored by DASH clients.

Because default_KID determines the scope of DRM system interactions, the contents of DRM system specific
ContentProtection elements with the same schemeIdUri SHALL be identical in all adaptation sets with the same
default_KID. This means that a DRM system will treat equally all adaptation sets that use the same content key.

To maintain the default_KID association, a DASH client that exposes APIs/callbacks to business logic for the
purpose of controlling DRM interactions and/or supplying data for DRM system configuration SHALL NOT allow
these APIs to associate multiple DRM system configurations for the same DRM system with the same default_KID.
Conversely, DASH client APIs SHOULD allow business logic to provide different DRM system configurations for the
same DRM system for use with different default_KIDs.

ISSUE 1 The above paragraph on URL handling should be generalized to all sets of alternative URLs but there
does not seem to be a suitable chapter in v4.3 If such a chapter is created in v5, we could replace the above
paragraph with a reference to the general URL handling guidelines.

EXAMPLE 6
A ContentProtection descriptor that provides default DRM system configuration for a fictional DRM system.

<ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="FirstDRM 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMgU3lzdGVtSUQ=</ce
nc:pssh>
 <dashif:authzurl>https://example.com/tenants/5341/authorize</dashif:authzurl>
 <dashif:laurl>https://example.com/AcquireLicense</dashif:laurl>
</ContentProtection>

Note: If you wish to change the default DRM system configuration associated with a content key, you must update
all the instances where the data is present in the MPD. For live services, this can mean updating the data in
multiple periods.

Some DRM systems support live updates to DRM system internal state (e.g. to deliver new leaf keys in a key
hierarchy). These updates SHALL NOT be present in the MPD and SHALL be delivered by moof/pssh boxes in
media segments.

The interactions involved in acquiring licenses and content keys in DRM workflows have historically been proprietary,
requiring a DASH client to be customized in order to achieve compatibility with specific DRM systems or license
server implementations. This chapter defines an interoperable model to encourage the creation of solutions that do
not require custom code in the DASH client in order to play back encrypted content. Use of this model is optional but
recommended.

Any conformance statements in this chapter apply to clients and services that opt in to using this model (e.g. a
"SHALL" statement means "SHALL, if using this model," and has no effect on implementations that choose to use
proprietary mechanisms for license acquisition). The authorization service and license server are considered part of
the DASH service.

In performing license acquisition, a DASH client needs to:

This license request model defines a mechanism for achieving both goals. This results in the following
interoperability benefits:

These benefits increase in value with the size of the solution, as they reduce the development cost required to offer
playback of encrypted content on a wide range of DRM-capable client platforms using different DRM systems, with
licenses potentially served by different license server implementations.

An authorization token is a JSON Web Token used to prove to a license server that the caller has the right to use
one or more content keys under certain conditions. Attaching this proof of authorization to a license request is
optional, allowing for architectures where a "license proxy" performs authorization checks in a manner transparent to
the DASH client.

The basic structural requirements for authorization tokens are defined by [jwt] and [jws]. This document adds some
additional constraints to ensure interoperability. Beyond that, the license server implementation is what defines the
contents of the authorization token (the set of claims it contains), as the data needs to express implementation-
specific license server business logic parameters that cannot be generalized.

Implementations SHALL process claims listed in [jwt] 4.1 "Registered Claim Names" when they are present (e.g.
exp "Expiration Time" and nbf "Not Before"). The typ header parameter ([jwt] 5.1) SHOULD NOT be present. The
alg header parameter defined in [jws] SHALL be present.

9.4. Delivering updates to DRM system internal state

10. DASH-IF interoperable license request model

1. Be able to prove that the user and device have the right to use the requested content keys.

2. Handle errors in a manner agnostic to the specific DRM system and license server being used.

DASH clients can execute DRM workflows without solution-specific logic and configuration.

Custom code specific to a license server implementation is limited to backend business logic.

10.1. Proof of authorization

Note: An authorization token is divided into a header and body. The distinction between the two is effectively
irrelevant and merely an artifact of the JWT specification. License servers may use existing fields and define new
fields in both the header and the body.

Authorization tokens are issued by an authorization service, which is part of a solution’s business logic. The
authorization service has access to project-specific context that it needs to make its decisions (e.g. the active
session, user identification and database of purchases/entitlements). A single authorization service can be used to
issue authorization tokens for multiple license servers, simplifying architecture in solutions where multiple license
server vendors are used.

Figure 4 Role of the authorization service in DRM workflow related communication.

An authorization service SHALL digitally sign any issued authorization token with an algorithm from the "HMAC with
SHA-2 Functions" or "Digital Signature with ECDSA" sets in [jwt]. The HS256 algorithm is recommended as a highly
compatible default, as it is a required part of every JWT implementation. License server implementations SHALL
validate the digital signature and reject tokens with invalid signatures or tokens using signature algorithms other than
those referenced here. The license server MAY further constrain the set of allowed signature algorithms.

Successful signature verification requires that keys/certificates be distributed and trust relationships be established
between the signing parties and the validating parties. The specific mechanisms for this are implementation-specific
and out of scope of this document.

EXAMPLE 7
JWT headers, specifying digital signature algorithm and expiration time (general purpose fields):

{
 "alg": "HS256",
 "exp": "1516239022"
}

JWT body with list of authorized content key IDs (an example field that could be defined by a license server):

{
 "authorized_kids": [
 "1611f0c8-487c-44d4-9b19-82e5a6d55084",
 "db2dae97-6b41-4e99-8210-493503d5681b"
]
}

The above data sets are serialized and digitally signed to arrive at the final form of the authorization token:
eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwYzgtNDg3Yy00N

GQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzNTAzZDU2ODFiIl19.tBvW6XVPHBRp1

JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

To obtain an authorization token, a DASH client needs to know the URL of the authorization service. DASH services
SHOULD specify the authorization service URL in the MPD using the dashif:authzurl element (see § 9.3 Providing
default DRM system configuration).

If no authorization service URL is provided by the MPD nor made available at runtime, a DASH client SHALL NOT
attach an authorization token to a license request. Absence of this URL implies that authorization operations are
performed in a manner transparent to the DASH client (see § 10.3 Possible deployment architectures).

Figure 5 Authorization tokens are requested from all authorization services referenced by the selected adaptation sets.

DASH clients will use zero or more authorization tokens depending on the number of authorization service URLs
defined for the set of content keys in use. One authorization token is requested from each distinct authorization
service URL. The authorization service URL is specified individually for each DRM system and content key (i.e. it is
part of the DRM system configuration). Services SHOULD use a single authorization token covering all content keys
and DRM systems but MAY divide the scope of authorization tokens if appropriate (e.g. different DRM systems
might use different license server vendors that use mutually incompatible authorization token formats).

DASH clients SHOULD cache and reuse authorization tokens up to the moment specified in the token’s exp
"Expiration Time" claim (defaulting to "never expires"). DASH clients SHALL discard the authorization token and
request a new one if the license server indicates that the authorization token was rejected (for any reason), even if
the "Expiration Time" claim is not present or the expiration time is in the future (see § 10.2 Problem signaling and
handling).

Before requesting an authorization token, a DASH client SHALL take the authorization service URL and add or
replace the kids query string parameter containing a comma-separated list in ascending alphanumeric order of
default_KID values obtained from the MPD. This list SHALL contain every default_KID for which proof of
authorization is requested from this authorization service (i.e. every distinct default_KID for which the same set of
URLs was specified using dashif:authzurl elements).

10.1.1. Obtaining authorization tokens

Note: Path or query string parameters in the authorization service URL can be used to differentiate between
license server implementations (and their respective authorization token formats).

To request an authorization token, a DASH client SHALL make an HTTP GET request to this modified URL,
attaching to the request any standard contextual information used by the underlying platform and allowed by active
security policy (e.g. HTTP cookies). This data can be used by the authorization service to identify the user and
device and assess their access rights.

If the HTTP response status code indicates a successful result and Content-Type: text/plain, the HTTP response
body is the authorization token.

If the HTTP response status code indicates a failure, a DASH client needs to examine the response to determine the
cause of the failure and handle it appropriately (see § 10.2 Problem signaling and handling). DASH clients SHOULD
NOT treat every failed authorization token request as a fatal error - if multiple authorization tokens are used to
authorize access to different content keys, it may be that some of them fail but others succeed, potentially still
enabling a successful playback experience. The examination of whether playback can successfully proceed
SHOULD be performed only once all license requests have been completed and the final set of available content
keys is known. See also § 11.3.1 Handling unavailability of content keys.

DASH clients SHALL follow HTTP redirects signaled by the authorization service.

The mechanism of performing authorization checks is implementation-specific. Common approaches might be to
identify the user from a session cookie, query the entitlements/purchases database to identify what rights are
assigned to the user and then assemble a suitable authorization token, taking into account the license policy
configuration that applies to the content keys being requested.

The structure of the authorization tokens is unconstrained beyond the basic requirements defined in § 10.1 Proof of
authorization. Authorization services need to issue tokens that match the expectations of license servers that will be
using these tokens. If multiple different license server implementations are served by the same authorization service,

Note: For DASH clients operating on the web platform, effective use of the authorization service may require the
authorization service to exist on the same origin as the website hosting the DASH client in order to share the
session cookies.

EXAMPLE 8
Consider an MPD that specifies the authorization service URL https://example.com/Authorize for the content
keys with default_KID values 1611f0c8-487c-44d4-9b19-82e5a6d55084 and db2dae97-6b41-4e99-8210-
493503d5681b.

The generated URL would then be https://example.com/Authorize?kids=1611f0c8-487c-44d4-9b19-
82e5a6d55084,db2dae97-6b41-4e99-8210-493503d5681b to which a DASH client would make a GET request:

GET /Authorize?kids=1611f0c8-487c-44d4-9b19-82e5a6d55084,db2dae97-6b41-4e99-8210-493503d5681b
 HTTP/1.1
Host: example.com

Assuming authorization checks pass, the authorization service would return the authorization token in the HTTP
response body:

HTTP/1.1 200 OK
Content-Type: text/plain

eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwYzgtNDg3Yy
00NGQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzNTAzZDU2ODFiIl19.tBvW6X
VPHBRp1JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

10.1.2. Issuing authorization tokens

the path or query string parameters in the authorization service URL allow the service to identify which output format
to use.

An authorization service SHALL NOT issue authorization tokens that authorize the use of content keys that are not in
the set of requested content keys (as defined in the request’s kids query string parameter). An authorization service
MAY issue authorization tokens that authorize the use of only a subset of the requested content keys, provided that at
least one content key is authorized. If no content keys are authorized for use, an authorization service SHALL signal
a failure.

Authorization tokens SHALL be returned by an authorization service using JWS Compact Serialization [jws] (the
aaa.bbb.ccc format). The serialized form of an authorization token SHOULD NOT exceed 5000 characters to
ensure that a license server does not reject a license request carrying the token due to excessive HTTP header size.

Authorization tokens are attached to license requests using the Authorization HTTP request header, signaling the
Bearer authorization type.

EXAMPLE 9
Example authorization token matching the requirements of a hypothetical license server.

JWT headers, specifying digital signature algorithm and expiration time:

{
 "alg": "HS256",
 "exp": "1516239022"
}

JWT body with list of authorized content key IDs (an example field that could be defined by a license server):

{
 "authorized_kids": [
 "1611f0c8-487c-44d4-9b19-82e5a6d55084",
 "db2dae97-6b41-4e99-8210-493503d5681b"
]
}

Serialized and digitally signed:
eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMiOlsiMTYxMWYwYzgtNDg3Yy00N

GQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzNTAzZDU2ODFiIl19.tBvW6XVPHBRp1

JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

Note: During license issuance, the license server may further constrain the set of available content keys (e.g. as a
result of examining the robustness level of the DRM system implementation requesting the license). See § 11.3.1
Handling unavailability of content keys.

10.1.3. Attaching authorization tokens to license requests

The same authorization token MAY be used with multiple license requests but one license request SHALL only carry
one authorization token, even if the license request is for multiple content keys. A DASH client SHALL NOT use
content key batching features offered by the platform APIs to combine requests for content keys that require the use
of separate authorization tokens.

A DASH client SHALL NOT make license requests for content keys that are configured as requiring an authorization
token but for which the DASH client has failed to acquire an authorization token.

Authorization services and license servers SHOULD indicate an inability to satisfy a request by returning an HTTP
response that:

A problem record SHALL contain a short human-readable description of the problem in the title field and
SHOULD contain a human-readable description, designed to help the reader solve the problem, in the detail field.

During DRM system activation, it is possible that multiple failures occur. DASH clients SHOULD be capable of
displaying a list of error messages to the end-user and SHOULD deduplicate multiple records with the same type

EXAMPLE 10
HTTP request to a hypothetical license server, carrying an authorization token.

POST /AcquireLicense HTTP/1.1
Authorization: Bearer eyJhbGciOiJIUzI1NiIsImV4cCI6IjE1MTYyMzkwMjIifQ.eyJhdXRob3JpemVkX2tpZHMi
OlsiMTYxMWYwYzgtNDg3Yy00NGQ0LTliMTktODJlNWE2ZDU1MDg0IiwiZGIyZGFlOTctNmI0MS00ZTk5LTgyMTAtNDkzN
TAzZDU2ODFiIl19.tBvW6XVPHBRp1JEwItsVnbHwIqoqnQAVQfTV9PGMkIU

(opaque license request blob from DRM system goes here)

Note: A content key requires an authorization token if there is at least one dashif:authzurl in the MPD or if this
element is added by solution-specific logic and configuration.

10.2. Problem signaling and handling

1. Signals a suitable status code (4xx or 5xx).

2. Has a Content-Type of application/problem+json.

3. Contains a HTTP response body conforming to [rfc7807].

EXAMPLE 11
HTTP response from an authorization service, indicating a rejected authorization token request because the
requested content is not a part of the user’s subscriptions.

HTTP/1.1 403 Forbidden
Content-Type: application/problem+json

{
 "type": "https://dashif.org/drm-problems/not-authorized",
 "title": "Not authorized",
 "detail": "Your active service plan does not include the channel 'EurasiaSport'.",
 "href": "https://example.com/view-available-subscriptions?channel=EurasiaSport",
 "hrefTitle": "Available subscriptions"
}

Note: The detail field is intended to be displayed to users of a DASH client, not to developers. The description
should be helpful to the user whose device the DASH client is running on.

(e.g. if an authorization token expires, this expiration may cause failures when requesting 5 content keys but should
result in at most 1 error message being displayed).

This chapter defines a set of standard problem types that SHOULD be used to indicate the nature of the failure.
Implementations MAY extend this set with further problem types if the nature of the failure does not fit into the existing
types.

Type: https://dashif.org/drm-problems/not-authorized

Title: Not authorized

HTTP status code: 403

Used by: authorization service

This problem record SHOULD be returned by an authorization service if the user is not authorized to access the
requested content keys. The detail field SHOULD explain why this is so (e.g. their subscription has expired, the
requested content keys are for a movie not in their list of purchases, the content is not available in their geographic
region).

The authorization service MAY supply a href (string) field on the problem record, containing a URL using which the
user can correct the problem (e.g. purchase a missing subscription). If the href field is present, a hrefTitle (string)
field SHALL also be present, containing a title suitable for a hyperlink or button (e.g. "Subscribe"). DASH clients
MAY expose this URL and title in their user interface to enable the user to find a quick solution to the problem.

Type: https://dashif.org/drm-problems/insufficient-proof-of-authorization

Title: Not authorized

HTTP status code: 403

Used by: license server

This problem record SHOULD be returned by a license server if the proof of authorization (if any) attached to a
license request is not sufficient to authorize the use of any of the requested content keys. The detail field SHOULD
explain what exactly was the expectation the caller failed to satisfy (e.g. no token provided, token has expired, token
is for disabled tenant).

When encountering this problem, a DASH client SHOULD discard whatever authorization token was used, acquire a
new authorization token and retry the license request. If no authorization service URL is available, this indicates a
DASH service or client misconfiguration (as clearly, an authorization token was expected) and the problem SHOULD
be escalated for operator attention.

Note: Merely the fact that a problem record was returned does not mean that it needs to be presented to the user
or acted upon in other ways. The user may still experience successful playback in the presence of some failed
requests. See § 11.3.1 Handling unavailability of content keys.

ISSUE 2 Let’s come up with a good set of useful problem types we can define here, to reduce the set of
problem types that must be defined in solution-specific scope.

10.2.1. Problem type: not authorized to access content

10.2.2. Problem type: insufficient proof of authorization

Note: If the authorization token authorizes only a subset of requested keys, a license server does not signal a
problem and simply returns only the authorized subset of content keys.

The interoperable license request model is designed to allow for the use of different deployment architectures in
common use today, including those where authorization duties are offloaded to a "license proxy". This chapter
outlines some of the possible architectures and how interoperable DASH clients support them.

The baseline architecture assumes that a separate authorization service exists, implementing the logic required to
determine which users have the rights to access which content.

Figure 6 The baseline architecture with an authorization service directly exposed to the DASH client.

While the baseline architecture offers several advantages, in some cases it may be desirable to have the
authorization checks be transparent to the DASH client. This need may be driven by license server implementation
limitations or by other system architecture decisions.

A common implementation for transparent authorization is to use a "license proxy", which acts as a license server
but instead forwards the license request after authorization checks have passed. Alternatively, the license server
itself may perform the authorization checks.

Figure 7 A transparent authorization architecture performs the authorization checks at the license server, which is often hidden
behind a proxy (indistinguishable from a license server to the DASH client).

The two architectures can be mixed, with some DRM systems performing the authorization operations in the license
server (or a "license proxy") and others using the authorization service directly. This may be relevant when integrating
license servers from different vendors into the same solution.

10.3. Possible deployment architectures

A DASH client will attempt to contact an authorization service if an authorization service URL is provided either in the
MPD or by solution-specific logic and configuration. If no such URL is provided, it will assume that all authorization
checks (if any are required) are performed by the license server (in reality, often a license proxy) and will not attach
any proof of authorization.

The concept of a content ID is sometimes used to identify groups of content keys based on solution-specific
associations. The DRM workflows described by this document do not require this concept to be used but do support
it if the solution architecture demands it.

In order to make use of a content ID in DRM workflows, the content ID SHOULD be embedded into authorization
service URLs and/or license server URLs (depending on which components are used and require the use of the
content ID). This may be done either directly at MPD authoring time (if the URLs and content ID are known at such
time) or by solution-specific logic and configuration at runtime.

Having embedded the content ID in the URL, all DRM workflows continue to operate the same as they normally
would, except now they also include knowledge of the content ID in each request to the authorization service and/or
license server. The content ID is an addition to the license request workflows and does not replace any existing data.

Embedding a content ID allows the service handling the request to use the content ID in its business
logic. However, the presence of a content ID in the URL does not invalidate any requirements related
to the processing of the default_KID values of content keys. For example, an authorization service

must still constrain the set of authorized content keys to a subset of the keys listed in the kids
parameter (§ 10.1.2 Issuing authorization tokens).

No generic URL template for embedding the content ID is defined, as the content ID is always a proprietary concept.
Recommended options include:

The content ID SHOULD NOT be embedded in DRM system specific data structures such as pssh boxes, as logic
that depends on DRM system specific data structures is not interoperable and often leads to increased development
and maintenance costs.

To present encrypted content a DASH client needs to:

10.4. Passing a content ID to services

Query string parameters: https://example.com/tenants/5341/authorize?contentId=movie865343651

Path segments: https://example.com/moviecatalog-license-api/movie865343651/AcquireLicense

EXAMPLE 12
DRM system configuration with the content ID embedded in the authorization service and license server URLs.
Each service may use a different implementation-defined URL structure for carrying the content ID.

<ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="AcmeDRM 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMgU3lzdGVtSUQ=</ce
nc:pssh>
 <dashif:authzurl>https://example.com/tenants/5341/authorize?contentId=movie865343651</dashi
f:authzurl>
 <dashif:laurl>https://example.com/moviecatalog-license-api/movie865343651/AcquireLicense</d
ashif:laurl>
</ContentProtection>

11. DRM workflows in DASH clients

A client also needs to take observations at runtime to detect the need for different content keys to be used (e.g. in
live services that change the content keys periodically) and to detect content keys becoming unavailable (e.g. due to
expiration of access rights).

This chapter defines the recommended DASH client workflows for interacting with DRM systems in these aspects.

A DRM system implemented by a client platform may only support playback of encrypted content that matches
certain parameters (e.g. codec type and level). A DASH client needs to detect what capabilities each DRM system
has in order to understand what adaptation sets can be presented and to make an informed choice when multiple
DRM systems can be used.

A typical media platform API such as EME [encrypted-media] will require the DASH client to query the platform by
supplying a desired capability set. The media platform will inspect the desired capabilities, possibly displaying a
permissions prompt to the user (if sensitive capabilities such as unique user identification are requested), after
which it will return a supported capability set that indicates which of the desired capabilities are available.

Figure 8 The DASH client presents a set of desired capabilities for each DRM system and receives a response with the
supported subset.

The exact set of capabilities that can be used and the data format used to express them in capability detection APIs
are defined by the media platform API. A DASH client is expected to have a full understanding of the potentially
offered capabilities and how they map to parameters in the MPD. Some capabilities may have no relation to the
MPD and whether they are required depends entirely on the DASH client or solution-specific logic and configuration.

1. Select a DRM system that is capable of decrypting the content.

During selection, the set of desired DRM system capabilities and the supported capabilities is examined to
identify suitable candidate systems.

2. Activate the selected DRM system and configure it to decrypt content.

During activation, acquire any missing content keys and the licenses that govern their use.

11.1. Capability detection

EXAMPLE 13
A typical DRM system might offer the following set of capabilities:

Playback of H.264 High profile up to level 4.0 at "low" robustness

Playback of H.264 High profile level 4.1 at "low" robustness

Playback of H.265 Main 10 profile up to level 5.2 at "low" robustness

Playback of AAC at "low" robustness

Unique user identification

Session persistence

To detect the set of supported capabilities, a DASH client must first determine the required capability set for each
adaptation set. This is the set of capabilities required to present all the content in a single adaptation set and can be
determined based on the following:

Querying for the support of different protection schemes is currently not possible via the capability
detection API of Encrypted Media Extensions [encrypted-media]. To determine the supported

protection schemes, a DASH client must assume what the CDM supports. A bug is open on W3C EME
and a pull request exists for the ISOBMFF file format bytestream. In future versions of EME, this may

become possible.

Some of the capabilities (e.g. required robustness level) are DRM system specific. The required capability set
contains the values for all DRM systems.

During DRM system selection, the required capability set of each adaptation set is compared with the supported
capability set of a DRM system. As a result of this, each candidate DRM system is associated with zero or more
adaptation sets that can be successfully presented using that DRM system.

It is possible that multiple DRM systems have the capabilities required to present some or all of the adaptation sets.
When multiple candidates exist, the DASH client SHOULD enable solution-specific logic and configuration to make
the final decision.

The workflows defined in this document contain the necessary extension points to allow DASH clients to exhibit
sensible default behavior and enable solution-specific logic and configuration to drive the choices in an optimal
direction.

The MPD describes the protection scheme used to encrypt content, with the default_KID values identifying the
content keys required for playback, and optionally provides the default DRM system configuration for one or more
DRM systems via ContentProtection descriptors. It also identifies the codecs used by each representation,
enabling a DASH client to determine the set of required DRM system capabilities.

Neither an initialization segment nor a media segment is required to select a DRM system. The MPD is the only
component of the presentation used for DRM system selection.

1. Content characteristics defined in the MPD (e.g. codecs strings of the representations and the used protection
scheme).

2. Solution-specific logic and configuration (e.g. what robustness level is required).

Note: Some sensible default behavior can be implemented in a generic way (e.g. the DRM system should be
able to enable playback of both audio and video if both media types are present in the MPD). Still, there exist
scenarios where the choices seem equivalent to the DASH client and an arbitrary choice needs to be made.

11.2. Selecting the DRM system

https://github.com/w3c/encrypted-media/pull/392

In addition to the MPD, a DASH client can use solution-specific logic and configuration for controlling DRM selection
and configuration decisions (e.g. loading license server URLs from configuration data instead of the MPD). This is
often implemented in the form of callbacks exposed by the DASH client to an "app" layer in which the client is
hosted. It is assumed that when executing any such callbacks, a DASH client makes available relevant contextual
data, allowing the business logic to make fully informed decisions.

The purpose of the DRM system selection workflow is to select a single DRM system that is capable of decrypting a
meaningful subset of the adaptation sets selected for playback. The selected DRM system will meet the following
criteria:

EXAMPLE 14
An adaptation set encrypted with a key identified by 34e5db32-8625-47cd-ba06-68fca0655a72 using the cenc
protection scheme.

<AdaptationSet>
 <ContentProtection
 schemeIdUri="urn:mpeg:dash:mp4protection:2011"
 value="cenc"
 cenc:default_KID="34e5db32-8625-47cd-ba06-68fca0655a72" />
 <ContentProtection
 schemeIdUri="urn:uuid:d0ee2730-09b5-459f-8452-200e52b37567"
 value="FirstDrm 2.0">
 <cenc:pssh>YmFzZTY0IGVuY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGJveCB3aXRoIHRoaXMgU3lzdGVtSU
Q=</cenc:pssh>
 <dashif:authzurl>https://example.com/tenants/5341/authorize?mode=firstDRM</dashif:aut
hzurl>
 <dashif:authzurl>https://alternative.example.com/tenants/5341/authorize?mode=firstDRM
</dashif:authzurl>
 <dashif:laurl>https://example.com/AcquireLicense</dashif:laurl>
 <dashif:laurl>https://alternative.example.com/AcquireLicense</dashif:laurl>
 </ContentProtection>
 <ContentProtection
 schemeIdUri="urn:uuid:eb3841cf-d7e4-4ec4-a3c5-a8b7f9f4f55b"
 value="SecondDrm 8.0">
 <cenc:pssh>ZXQgb2YgcGxheWFibGUgYWRhcHRhdGlvbiBzZXRzIG1heSBjaGFuZ2Ugb3ZlciB0aW1lIChlLm
cuIGR1ZSB0byBsaWNlbnNlIGV4cGlyYXRpb24gb3IgZHVl</cenc:pssh>
 <dashif:authzurl>https://example.com/tenants/5341/authorize?mode=secondDRM</dashif:au
thzurl>
 </ContentProtection>
 <Representation mimeType="video/mp4" codecs="avc1.64001f" width="640" height="360" />
 <Representation mimeType="video/mp4" codecs="avc1.640028" width="852" height="480" />
</AdaptationSet>

The MPD provides DRM system configuration for DRM systems:

There are two encrypted representations in the adaptation set, each with a different codecs string. Both codecs
strings are included in the required capability set of this adaptation set. A DRM system must support playback of
both representations in order to present this adaptation set.

For FirstDRM, the MPD provides complete DRM system configuration, including the optional
dashif:authzurl. Two equivalent alternative URLs are provided for accessing the associated services.

For SecondDRM, the MPD does not provide the license server URL. It must be supplied at runtime.

1. It is actually implemented by the media platform.

2. It supports a set of capabilities sufficient to present an acceptable set of adaptation sets.

3. The necessary DRM system configuration for this DRM system is available.

It may be that the selected DRM system is only able to decrypt a subset of the encrypted adaptation sets selected for
playback. See also § 11.3.1 Handling unavailability of content keys.

The set of adaptation sets considered during selection does not need to be constrained to a single period,
potentially enabling seamless transitions to a new period with a different set of content keys.

In live services new periods may be added over time, with potentially different DRM system configuration and
required capability sets, making it necessary to re-execute the selection process.

The default DRM system configuration in the MPD of a live service can change over time. DASH clients are not
expected to re-execute DRM workflows if the default DRM system configuration in the MPD changes for an
adaptation set that has already been processed in the past. Such changes will only affect clients that are starting
playback.

When encrypted adaptation sets are initially selected for playback or when the selected set of encrypted adaptation
sets changes (e.g. because a new period was added to a live service), a DASH client SHOULD execute the
following algorithm for DRM system selection:

Note: If a new period has significantly different requirements in terms of DRM system configuration or the
required capability sets, the media pipeline may need to be re-initialized to play the new period. This may result
in a glitch/pause at the period boundary. The specifics are implementation-dependant.

1. Let adaptation_sets be the set of encrypted adaptation sets selected for playback.

2. Let signaled_system_ids be the set of DRM system IDs for which a ContentProtection descriptor is
present in the MPD on any entries in adaptation_sets.

3. Let candidate_system_ids be an ordered list initialized with items of signaled_system_ids in any order.

4. Provide candidate_system_ids to solution-specific logic and configuration for inspection/modification.

This enables business logic to establish an order of preference where multiple DRM systems are
present.

This enables business logic to filter out DRM systems known to be unsuitable.

This enables business logic to include DRM systems not signaled in the MPD.

5. Let default_kids be the set of all distinct default_KID values in adaptation_sets.

6. Let system_configurations be an empty map of system ID -> map(default_kid -> configuration),
representing the DRM system configuration of each default_KID for each DRM system.

7. For each system_id in candidate_system_ids:

1. Let configurations be a map of default_kid -> configuration where the keys are default_kids and
the values are the DRM system configurations initialized with data from ContentProtection descriptors
in the MPD (matching on default_KID and system_id).

If there is no matching ContentProtection descriptors in the MPD, the map still contains a partially
initialized DRM system configuration for the default_KID.

Enhance the MPD-provided default DRM system configuration with synthesized data where

appropriate (e.g. to generate W3C Clear Key initialization data in a format supported by the
platform API).

2. Provide configurations to solution-specific logic and configuration for inspection and modification,
passing system_id along as contextual information.

This enables business logic to override the default DRM system configuration provided by the
MPD.

This enables business logic to inject values that were not embedded in the MPD.

This enables business logic to reject content keys that it knows cannot be used, by removing the
DRM system configuration for them.

3. Remove any entries from configurations that do not contain all of the following pieces of data:

License server URL

DRM system initialization data in a format accepted by the particular DRM system; this is generally
a pssh box [CENC], though some DRM systems also support other formats

4. Add configurations to system_configurations (keyed on system_id).

8. Remove from candidate_system_ids any entries for which the map of DRM system configurations in
system_configurations is empty.

9. Let required_capability_sets be a map of adaptation set -> capability set, providing the required
capability set of every item in adaptation_sets.

10. Match the capabilities of DRM systems with the required capability sets of adaptation sets:

1. Let supported_adaptation_sets be an empty map of system ID -> list of adaptation set,
incidating which adaptation sets are supported by which DRM systems.

2. For each system_id in candidate_system_ids:

1. Let candidate_adaptation_sets by the set of adaptation sets for which system_configurations
contains DRM system configuration (keyed on system_id and then the default_KID of the
adaptation set).

This excludes from further consideration any adaptation sets that could not be used due to
lacking DRM system configuration, even if capabilities match.

2. Let maximum_capability_set be the union of all values in required_capability_sets keyed on
items of candidate_adaptation_sets.

3. Query the DRM system identified by system_id with the capability set maximum_capability_set,
assigning the output to supported_capability_set.

A DRM system that is not implemented is treated as having no capabilities.

4. For each adaptation_set in candidate_adaptation_sets:

1. If supported_capability_set contains all the capabilities in the corresponding entry in
required_capability_sets (keyed on adaptation_set), add adaptation_set to the list in
supported_adaptation_sets (keyed on system_id).

11. Remove from supported_adaptation_sets any entries for which the value (the set of adaptation sets) meets
any of the following criteria:

The set is empty (the DRM system does not support playback of any adaptation set).

The set does not contain all encrypted media types present in the MPD (e.g. the DRM system can
decrypt only the audio content but not the video content).

12. If supported_adaptation_sets is empty, playback of encrypted content is not possible and the workflow ends.

If a DRM system is successfully selected, activation and potentially one or more license requests will follow before
playback can proceed. These related workflows are described in the next chapters.

Once a suitable DRM system has been selected, it must be activated by providing it a list of content keys that the
DASH client requests to be made available for content decryption, together DRM system specific initialization data
for each of the content keys. The result of activation is a DRM system that is ready to decrypt zero or more encrypted
adaptation sets selected for playback.

During activation, it may be necessary to perform license requests in order to obtain some or all of the content keys
and the usage policy that constrains their use. Some of the requested content keys may already be available to the
DRM system, in which case no license request will be triggered.

Once a suitable DRM system has been selected, a DASH client SHOULD execute the following algorithm to activate
it:

13. If supported_adaptation_sets contains multiple items, request solution-specific logic and configuration to
select the preferred DRM system from among them.

This allows solution-specific logic and configuration to make an informed choice when different DRM
systems can play different adaptation sets. Contrast this to the initial order of preference that was
defined near the start of the algorithm, which does not consider capabilities.

14. If solution-specific logic and configuration does not make a decision, find the first entry in
candidate_system_ids that is among the keys of supported_adaptation_sets. Remove items with any other
key from supported_adaptation_sets.

This falls back to the "order of preference" logic and takes care of scenarios where business logic did
not make an explicit choice.

15. Let selected_system_id be the single remaining key in supported_adaptation_sets.

16. Let final_adaptation_sets be the single remaining value in supported_adaptation_sets.

17. Let final_configurations (map of default_KID -> DRM system configuration) be the value from
system_configurations keyed on selected_system_id.

18. Remove from final_configurations any entries keyed on default_KID values that are not used by any
adaptation set in final_adaptation_sets.

These are the configurations of adaptation sets for which configuration was present but for which the
required capabilities were not offered by the DRM system.

19. Prohibit playback of any encrypted adaptation sets that are not in final_adaptation_sets.

These are existing adaptation sets for which either no DRM system configuration exists or for which the
required capabilities are not provided by the selected DRM system.

20. Execute the DRM system activation workflow, providing selected_system_id and final_configurations as
inputs.

11.3. Activating the DRM system

Note: The details of stored content key management and persistent DRM session management are out of scope
of this document - workflows described here simply accept the fact that some content keys may already be
available, regardless of why that is the case or what operations are required to establish content key persistence.

1. Let configurations be the input to the algorithm; it is a map with the entry keys being default_KID values
identifying the content keys and the entry values being the DRM system configuration to use with that
particular content key.

The default format for initialization data supplied to a DRM system is a pssh box. However, if the DASH client has
knowledge of any special initialization requirements of a particular DRM system, it MAY supply initialization data in
other formats (e.g. the keyids JSON structure used by W3C Clear Key). Presence of initialization data in the
expected format is considered during DRM system selection when determining whether a DRM system is a valid
candidate.

For historical reasons, platform APIs often implement DRM system activation as a per-content-key operation. Some
APIs and DRM system implementations may also support batching all the content keys into a single activation
operation, for example by combining multiple "content key and DRM system configuration" data sets into a single
data set in a single API call. DASH clients MAY make use of such batching where supported by the platform API. The
workflow in this chapter describes the most basic scenario where activation must be performed separately for each
content key.

It is possible that not all of the encrypted adaptation sets selected for playback can actually be played back (e.g.
because a content key for ultra-HD content is only authorized for use by implementations with a high robustness
level). The unavailability of one or more content keys SHOULD NOT be considered a fatal error condition as long as
at least one audio and at least one video adaptation set remains available for playback (assuming both content
types are initially selected for playback). This logic MAY be overridden by solution specific business logic to better
reflect end-user expectations.

The set of available content keys can change over time (e.g. due to license expiration or due to new periods in the
presentation requiring different content keys). A DASH client SHALL monitor the set of default_KID values that are
required for playback and either request the DRM system to make these content keys available or deselect the
affected adaptation sets when the content keys become unavailable. Conceptually, any such change can be handled
by re-executing the DRM system selection and activation workflows, although platform APIs may also offer more fine-
grained update capabilities.

A DASH client can request a DRM system to enable decryption using any set of content keys (if it has the necessary
DRM system configuration). However, this is only a request and playback can be countermanded at multiple stages
of processing by different involved entities.

2. Let pending_license_requests be an empty set.

3. For each kid and config pair in configurations invoke the platform API to activate the selected DRM system
and signal it to make kid available for decryption, passing the DRM system the initialization data stored in
config.

If the DRM system indicates that one or more license requests are needed, add any license request data
provided by the DRM system and/or platform API to pending_license_requests, together with the
associated kid and config values.

4. If pending_license_requests is not an empty set, execute the license request workflow and provide this set
as input to the algorithm.

5. Inspect the set of content keys the DRM system indicates are now available and deselect from playback any
adaptation sets for which the content key has not become available.

6. Inspect the set of remaining adaptation sets to determine if a sufficient data set remains for successful
playback. Raise error if playback cannot continue.

Note: The batching may, for example, be accomplished by concatenating all the pssh boxes for the different
content keys. Support for this type of batching among DRM systems and platform APIs remains uncommon,
despite the potential efficiency gains from reducing the number of license requests triggered.

11.3.1. Handling unavailability of content keys

Figure 9 The set of content keys made available for use can be far smaller than the set requested by a DASH client. Example
workflow indicating potential instances of content keys being removed from scope.

The set of available content keys is only known at the end of executing the activation workflow and may decrease
over time (e.g. due to license expiration). The proper handling of unavailable keys depends on the limitations
imposed by the platform APIs.

Media platform APIs often refuse to start or continue playback if the DRM system is not able to
decrypt all the data already in media platform buffers.

It may be appropriate for a DASH client to avoid buffering data for encrypted adaptation sets until the required
content key is known to be available. This allows the client to avoid potentially expensive buffer resets and rebuffering
if unusable data needs to be removed from buffers.

If a content key expires during playback, it is common for a media platform to pause playback until the content key
can be refreshed with a new license or until data encrypted with the now-unusable content key is removed from
buffers. DASH clients SHOULD acquire new licenses in advance of license expiration. Alternatively, DASH clients
should implement appropriate recovery/fallback behavior to ensure a minimally disrupted user experience in
situations where some content keys remain available.

When content keys are acquired, the license that delivers them also supplies a policy for the DRM system, instructing
it how to protect the content that is made accessible by the content keys.

Note: The DASH client should still download the data into intermediate buffers for faster startup and simply defer
submitting it to the media platform API until key availability is confirmed.

11.4. Content protection policies

Typical DRM systems will enforce the most restrictive protection policy from among all active content
keys and will refuse to start playback if any of the constraints cannot be satisfied! As a result, it can be the
case that even though only the constraints for a UHD video stream cannot be satisfied, playback of even the lower
quality levels is blocked.

In many cases, it might be more desirable to instead exclude the UHD quality level from the set of adaptation sets
selected for playback and DRM system activation. Alternatively, there may be a different DRM system
implementation available on the device that is capable of satisfying the constraints. It is not possible for a DASH
client to resolve these constraints as it has no knowledge of what policy applies nor of the capabilities of the different
DRM system implementations.

Solution-specific logic and configuration SHOULD be used to select the most suitable DRM system, taking into
consideration the protection policy, and to preemptively exclude adaptation sets from playback if it can be foreseen
that the protection policy for their content keys cannot be satisfied. Likewise, license servers SHOULD NOT provide
content keys if it can be foreseen that the recipient will be unable to satisfy their protection policy.

DASH clients performing license requests SHOULD follow the DASH-IF interoperable license request model. The
remainder of this chapter only applies to DASH clients that follow this model. Alternative implementations are
possible and in common use but are not interoperable and are not described in this document.

DRM systems generally do not perform license requests on their own. Rather, when they determine that a license is
required, they generate a document that serves as the license request body and expect the DASH client to deliver it
to a license server for processing. The latter returns a suitable response that, if a license is granted, encapsulates
the content keys in an encrypted form only readable to the DRM system.

Figure 10 Simplified conceptual model of license request processing. Many details omitted.

EXAMPLE 15

Protection policy may define the following example requirements:

All connected displays must support HDCP 2.2 or newer.

The video display area must be no more than 1280x720 pixels.

Minimum DRM system robustness level is "800".

11.5. Performing license requests

The request and response body are in DRM system specific formats and considered opaque to the DASH client. A
DASH client SHALL NOT modify the request body or the response body.

The license request workflow defined here exists to enable the following goals to be achieved without the need to
customize the DASH client with logic specific to a DRM system or license server implementation:

The proof of authorization is optional and the need to attach it to a license request is indicated by the presence of at
least one dashif:authzurl in the DRM system configuration. The proof of authorization is a JSON Web Token in
compact encoding (the aaa.bbb.ccc form) returned as the HTTP response body when the DASH client performs a
GET request to this URL. The token is attached to a license request in the HTTP Authorization header with the
Bearer type. For details, see § 10 DASH-IF interoperable license request model.

Error responses from both the authorization service and the license server SHOULD be returned as [rfc7807]
compatible responses with a 4xx or 5xx status code and Content-Type: application/problem+json.

DASH clients SHOULD implement retry behavior to recover from transient failures and expiration of authorization
tokens.

To process license requests queued during execution of the DRM system activation workflow, the client SHOULD
execute the following algorithm:

1. Provide proof of authorization if the license server requires the DASH client to prove that the user being served
has the rights to use the requested content keys.

2. Execute the license request workflow driven purely by the MPD, without any need for solution-specific logic and
configuration.

3. Detect common error scenarios and present an understandable message to the user.

1. Let pending_license_requests be the set of license requests that the DRM system has requested to be
performed, with at least the following data present in each entry:

The license request body provided by the DRM system.

The DRM system configuration.

2. Let retry_requests be an empty set. It will contain the set of license requests that are to be retried due to
transient failure.

3. Let pending_authz_requests be a map of URL -> GUID[], with the keys being authorization service URLs
and the values being lists of default_KIDs. The map is initially empty.

4. For each request in pending_license_requests:

1. If the DRM system configuration does not contain at least one value for dashif:authzurl, skip to the
next loop iteration. This means that no authorization token is to be attached to this license request.

2. Create/update the entry in pending_authz_requests with the key being the set of dashif:authzurl
values; add the default_KID to the list in the map entry value.

5. Let authz_tokens be a map of GUID -> string, with the keys being default_KIDs and the values being the
associated authorization tokens. The map is initially empty.

6. For each authz_url_set and kids pair in pending_authz_requests:

1. If the DASH client has a cached authorization token previously acquired for the same authz_url_set and
kids combination that still remains valid according to its exp "Expiration Time" claim:

1. Let authz_token be the cached authorization token.

2. Else:

1. Create a comma-separated list from kids in ascending alphanumeric (ASCII) order.

2. Let authz_url be a random item from authz_url_set.

While the above algorithm is presented sequentially, authorization requests and license requests may be performed
in a parallelized manner to minimize processing time.

3. Let authz_url_with_kids be authz_url with an additional query string parameter named kids with
the value from kids.

authz_url may already include query string parameters, which should be preserved!

4. Perform an HTTP GET request to authz_url_with_kids (following redirects).

Include any relevant HTTP cookies.

Allow solution-specific logic and configuration to intercept the request and inspect/modify it
as needed (e.g. provide additional HTTP request headers to enable user identification).

5. If the response status code indicates failure, make a note of any error information for later
processing and skip to the next authz_url.

6. Let authz_token be the HTTP response body.

7. Submit authz_token into the DASH client cache, with the cache key being a combination of
authz_url_set and kids, and the cache entry expiration being defined by the exp "Expiration
Time" claim in the authorization token (defaulting to never expires).

3. For each kid in kids, add an entry to authz_tokens with the key kid and the value being authz_token.

7. For each request in pending_license_requests:

1. If the DRM system configuration from request contains an authorization service URL but there is no
entry in authz_tokens keyed on the default_KID from request, skip to the next loop iteration.

This occurs when an authorization token is required but cannot be obtained for this license request.

2. Execute an HTTP POST request with the following parameters:

Request body is the license request body from request.

Request URL is defined by DRM system configuration. If multiple license server URLs are defined,
select a random URL from the set.

If authz_tokens contains an entry with the key being the default_KID from request, add the
Authorization header with the value being the string Bearer concatenated with a space and the
authorization token from authz_tokens (e.g. Bearer aaa.bbb.ccc).

3. If the response status code indicates failure:

1. Expel the used authorization token (if any) from the DASH client cache to force a new token to be
used for any future license requests.

2. If the DASH client believes that retrying the license request might succeed (e.g. because the
response indicates that the error might be transient or due to an expired authorization token that
can be renewed), add request to retry_requests.

3. Make a note of any error information for later processing and presentation to the user.

4. Skip to the next loop iteration.

4. Submit the HTTP response body to the DRM system for processing.

This may cause the DRM system to trigger additional license requests. Append any triggered
request to pending_license_requests and copy the DRM system configuration from the current
entry, processing the additional entry in a future iteration of the same loop.

If the DRM system indicates a failure to process the data, make a note of any error information for
later processing and skip to the next loop iteration.

8. If retry_requests is not empty, re-execute this workflow with retry_requests as the input.

At the end of this algorithm, all pending license requests have been performed. However, it is not necessary that all
license requests or authorization requests succeed! For example, even if one of the requests needed to obtain an
HD quality level content key fails, other requests may still make SD quality level content keys available, leading to a
successful playback if the HD quality level is deselected by the DASH client. Individual failing requests therefore do
not indicate a fatal error. Rather, such error information should be collected and provided to the top-level error
handler of the DRM system activation workflow, which can make use of this data to present user-friendly messages if
it decides that meaningful playback cannot take place with the final set of available content keys. See also § 11.3.1
Handling unavailability of content keys.

In some situations a DASH client can foresee the need to make new content keys available for use or to renew the
licenses that enable content keys to be used. For example:

DASH clients SHOULD perform license acquisition ahead of time, activating a DRM system before it is needed or
renewing licenses before they expire. This provides the following benefits:

To avoid a huge number of concurrent license requests causing license server overload, a DASH client SHOULD
perform a license request at a randomly selected time between the moment when it became aware of the need for
the license request and the time when the license must be provided to a DRM system (minus some safety margin).

Multiple license requests to the same license server with the same authorization token SHOULD be batched into a
single request if the media platform API supports this. See § 11.3 Activating the DRM system for details.

The possibility for ahead-of-time DRM system activation, seamless license renewal and license request batching
depends on the specific DRM system and media platform implementations. Some implementations might not
support optimal behavior.

In a live DASH presentation the rights of the user can be different for different programs included in the presentation.
This chapter describes recommended mechanisms for forcing rights to be re-evaluated at program boundaries.

The user’s level of access to content is governed by the issuance (or not) of licenses with content keys and the policy
configuration carried by the licenses. The license server is the authority on what rights are assigned to the user. To
force re-evaluation of rights, a service must force a new license request to be made. This can be accomplished by:

Not every DRM system supports real-time license expiration - some widely used implementations only check license
validity at activation time. Therefore the latter option is a more universally applicable method to force re-evaluation of
access rights. As changing the content key is only possible on DASH period boundaries, live DASH presentations
SHOULD create a new period in which content is encrypted with new content keys to force re-evaluation of user’s
access rights.

11.5.1. Efficient license acquisition

Live DASH services can at any time introduce new periods that use different content keys. They can also
alternmate between encrypted and clear content in different periods.

The license that enables a content key to be used can have an expiration time, after which a new license is
required.

Playback can continue seamlessly when licenses are renewed, without pausing for license acquisition.

New content keys are already available when content needs them, again avoiding a pause for license
acquisition.

12. Periodic re-authorization

1. Defining an expiration time on the license.

2. Changing the content key to one that is not yet available to DASH clients, thereby triggering DRM system
activation for the new content key.

Using a key hierarchy allows a single content key to selectively unlock only a subset of a DASH presentation and
apply license policy updates without the need to perform license requests at every program boundary. This
mechanism is a specialization of periodic re-authorization for scenarios where license requests at program
boundaries are not always desirable or possible.

Figure 11 A key hierarchy establishes a DRM system specific relationship between a root key and a set of leaf keys.

A key hierarchy defines a multi-level structure of cryptographic keys, instead of a single content key:

A root key might not be an actual cryptographic key. Rather, it acts as a reference to identify the set of leaf keys that
protect content. A DASH client requesting a license for a specific root key will be interpreted as requesting a license
that makes available all the leaf keys associated with that root key.

This layering enables the user’s rights to content to be evaluated in two ways:

Changing the root key is equivalent to changing the content key in terms of MPD signaling, requiring a new period to
be started. The leaf key can be changed in any media segment and does not require modification of the MPD. Leaf
keys SHOULD NOT be changed within the same program. Changing leaf keys on a regular basis does not increase
cryptographic security.

Note: Changing the content keys does not increase the cryptographic security of content protection. The term
periodic re-authorization is therefore used here instead of key rotation, to maintain focus on the goal and not the
mechanism.

13. Controlling access rights with a key hierarchy

Root keys take the place of content keys in DASH client workflows.

Leaf keys are used to encrypt the media samples.

Note: Intermediate layers of cryptographic keys may also exist between root keys and leaf keys but such layers
are DRM system specific and only processed by the DRM system, being transparent to the DASH client and the
media platform. To a DASH client, only the root keys have meaning. To the media platform, only the leaf keys
have meaning.

1. Changing the root key invokes the full re-evaluation workflow as a new license request must be made by the
DASH client.

2. Changing the leaf key invokes an evaluation of the rights granted by the license for the root key and processing
of any additional policy attached to the leaf key. If result of this evaluation indicates the leaf key cannot be used,
the DRM system will signal playback failure to the DASH client.

Note: A DASH service with a key hierarchy is sometimes referred to as using "internal key rotation".

The mechanism by which a set of leaf keys is made available based on a request for a root key is DRM system
specific. Nevertheless, different DRM systems may be interoperable as long as they can each make available the
required set of leaf keys using their system-specific mechanisms, using the same root key as the identifier for the
same set of leaf keys.

When using a key hierarchy, the leaf keys are typically delivered in-band in the media segments, using moof/pssh
boxes, together with additional/updated license policy constraints. The exact implementation is DRM system specific
and transparent to a DASH client.

Figure 12 Different rows indicate root key changes. Color alternations indicate leaf key changes. A key hierarchy enables per-
program access control even in scenarios where a license request is only performed once per day. The single license request

makes available all the leaf keys that the user is authorized to use during the next epoch.

A key hierarchy is useful for broadcast scenarios where license requests are not possible at arbitrary times (e.g.
when the system operates by performing nightly license updates). In such a scenario, this mechanism enables user
access rights to be cryptographically enforced at program boundaries, defined on the fly by the service provider,
while re-evaluating the access rights during moments when license requests are possible. At the same time, it
enables the service provider to supply in-band updates to license policy (when supported by the DRM system).

Similar functionality could be implemented without a key hierarchy by using a separate content key for each program
and acquiring all relevant licenses in advance. The advantages of a key hierarchy are:

Clear Key is a DRM system defined by W3C in [encrypted-media]. It is intended primarily for client and media
platform development/test purposes and does not perform the content protection and content key protection duties
ordinarily expected from a DRM system. Nevertheless, in DASH client DRM workflows, it is equivalent to a real DRM
system.

A DRM system specific ContentProtection descriptor for Clear Key SHALL use the system ID e2719d58-a985-
b3c9-781a-b030af78d30e and value="ClearKey1.0".

The dashif:laurl element SHOULD be used to indicate the license server URL. Legacy content MAY also use an
equivalent Laurl element from the http://dashif.org/guidelines/clearKey namespace, as this was defined in
previous versions of this document (the definition is now expanded to also cover non-clearkey scenarios). Clients
SHOULD process the legacy element if it exists and dashif:laurl does not.

The license request and response format is defined in [encrypted-media].

W3C describes the use of the system ID 1077efec-c0b2-4d02-ace3-3c1e52e2fb4b in [eme-initdata-cenc] section 4

Greatly reduced license acquisition traffic and required license storage size, as DRM systems are optimized for
efficient handling of large numbers of leaf keys.

Ability for the service provider to adjust license policy at any time, not only during license request processing (if
in-band policy updates are supported by the DRM system).

14. Use of W3C Clear Key with DASH

to indicate that tracks are encrypted with Common Encryption. However, the presence of this "common" pssh box
does not imply that Clear Key is to be used for decryption. DASH clients SHALL NOT interpret a pssh box with the
system ID 1077efec-c0b2-4d02-ace3-3c1e52e2fb4b as an indication that the Clear Key mechanism is to be used
(nor as an indication of anything else beyond the use of Common Encryption).

The namespace for the DASH-IF MPD extensions is https://dashif.org/. This document refers to this
namespace using the dashif prefix. The XML schema of the extensions is:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:dashif="https://dashif.org/"
 targetNamespace="https://dashif.org/">

 <xs:element name="laurl" type="xs:anyURI"/>
 <xs:element name="authzurl" type="xs:anyURI"/>
</xs:schema>

Transport security in HTTP-based delivery may be achieved by using HTTP over TLS (HTTPS) as specified in [RFC
8446]. HTTPS is a protocol for secure communication which is widely used on the Internet and also increasingly
used for content streaming, mainly for protecting:

As an MPD carries links to media resources, web browsers follow the W3C recommendation [mixed-content]. To
ensure that HTTPS benefits are maintained once the MPD is delivered, it is recommended that if the MPD is
delivered with HTTPS, then the media also be delivered with HTTPS.

DASH also explicitly permits the use of HTTPS as a URI scheme and hence, HTTP over TLS as a transport protocol.
When using HTTPS in an MPD, one can for instance specify that all media segments are delivered over HTTPS, by

EXAMPLE 16

An example of a Clear Key ContentProtection descriptor using laurl is as follows.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" xmlns:dashif="https://dashif.org/">
 <Period>
 <AdaptationSet>
 <ContentProtection schemeIdUri="urn:uuid:e2719d58-a985-b3c9-781a-b030af78d30e" value="Clea
rKey1.0">
 <dashif:laurl>https://clearKeyServer.foocompany.com</dashif:laurl>
 <dashif:laurl>file://cache/licenseInfo.txt</dashif:laurl>
 </ContentProtection>
 </AdaptationSet>
 </Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

15. XML Schema for DASH-IF MPD extensions

16. HTTPS and DASH

The privacy of the exchanged data from eavesdropping by providing encryption of bidirectional communications
between a client and a server, and

The integrity of the exchanged data against forgery and tampering.

declaring that all the BaseURL 's are HTTPS based, as follow:

<BaseURL>https://cdn1.example.com/</BaseURL>
<BaseURL>https://cdn2.example.com/</BaseURL>

One can also use HTTPS for retrieving other types of data carried with a MPD that are HTTP-URL based, such as,
for example, DRM licenses specified within the ContentProtection descriptor:

<ContentProtection
 schemeIdUri="urn:uuid:xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"
 value="DRMNAME version"
 <dashif:laurl>https://MoviesSP.example.com/protect?license=kljklsdfiowek</dashif:laurl>
</ContentProtection>

It is recommended that HTTPS be adopted for delivering DASH content. It should be noted nevertheless, that HTTPS
does interfere with proxies that attempt to intercept, cache and/or modify content between the client and the TLS
termination point within the CDN. Since the HTTPS traffic is opaque to these intermediate nodes, they can lose
much of their intended functionality when faced with HTTPS traffic.

While using HTTPS in DASH provides good protection for data exchanged between DASH servers and clients,
HTTPS only protects the transport link, but does not by itself provide an enforcement mechanism for access control
and usage policies on the streamed content. HTTPS itself does not imply user authentication and content
authorization (or access control). This is especially the case that HTTPS provides no protection to any streamed
content cached in a local buffer at a client for playback. HTTPS does not replace a DRM.

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and
notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text
with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

Conformance

EXAMPLE 17
This is an example of an informative example.

Note, this is an informative note.

Index

Terms defined by this specification

authorization token, in §10.1

content key, in §5

Information technology — MPEG systems technologies — Part 7: Common encryption in ISO base media file
format files. February 2016. Published. URL: https://www.iso.org/standard/68042.html

Information technology — Multimedia application format (MPEG-A) — Part 19: Common media application
format (CMAF) for segmented media. January 2018. Published. URL: https://www.iso.org/standard/71975.html

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats. December 2019. Published. URL: https://www.iso.org/standard/79329.html

David Dorwin; et al. "cenc" Initialization Data Format. 15 September 2016. NOTE. URL:
https://www.w3.org/TR/eme-initdata-cenc/

David Dorwin; et al. Encrypted Media Extensions. 18 September 2017. REC. URL:
https://www.w3.org/TR/encrypted-media/

Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format. December
2015. International Standard. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

M. Jones; J. Bradley; N. Sakimura. JSON Web Signature (JWS). May 2015. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7515

M. Jones; J. Bradley; N. Sakimura. JSON Web Token (JWT). 6 July 2012. Internet Draft. URL:
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01

Mike West. Mixed Content. 2 August 2016. CR. URL: https://www.w3.org/TR/mixed-content/

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

M. Nottingham; E. Wilde. Problem Details for HTTP APIs. March 2016. Proposed Standard. URL:
https://tools.ietf.org/html/rfc7807

DRM system, in §7

DRM system configuration, in §9

key systems, in §7.2

Leaf keys, in §13

license, in §5

media platform, in §6

protection scheme, in §7

required capability set, in §11.1

robustness levels, in §7.1

Root keys, in §13

solution-specific logic and configuration, in §6

References

Normative References

[CENC]

[CMAF]

[DASH]

[EME-INITDATA-CENC]

[ENCRYPTED-MEDIA]

[ISOBMFF]

[JWS]

[JWT]

[MIXED-CONTENT]

[RFC2119]

[RFC7807]

https://www.iso.org/standard/68042.html
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/71975.html
https://www.iso.org/standard/71975.html
https://www.iso.org/standard/79329.html
https://www.iso.org/standard/79329.html
https://www.w3.org/TR/eme-initdata-cenc/
https://www.w3.org/TR/eme-initdata-cenc/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-01
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/mixed-content/
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc7807
https://tools.ietf.org/html/rfc7807

E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. August 2018. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8446

Protocol Extension for Low-Latency HLS (Preliminary Specification). URL:
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-
latency_hls_preliminary_specification

Information technology — MPEG systems technologies — Part 12: Sample variants. December 2018.
Published. URL: https://www.iso.org/standard/74431.html

PlayReady Content Encryption Modes. URL: https://docs.microsoft.com/en-us/playready/packaging/content-
encryption-modes

[RFC8446]

Informative References

[HLS-LowLatency]

[ISO23001-12]

[MSPR-EncryptionModes]

Issues Index

ISSUE 1 The above paragraph on URL handling should be generalized to all sets of alternative URLs but there
does not seem to be a suitable chapter in v4.3 If such a chapter is created in v5, we could replace the above
paragraph with a reference to the general URL handling guidelines. ↵

ISSUE 2 Let’s come up with a good set of useful problem types we can define here, to reduce the set of
problem types that must be defined in solution-specific scope. ↵

↑
→Loading [MathJax]/extensions/tex2jax.js

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-latency_hls_preliminary_specification
https://developer.apple.com/documentation/http_live_streaming/protocol_extension_for_low-latency_hls_preliminary_specification
https://www.iso.org/standard/74431.html
https://www.iso.org/standard/74431.html
https://docs.microsoft.com/en-us/playready/packaging/content-encryption-modes
https://docs.microsoft.com/en-us/playready/packaging/content-encryption-modes

	DASH-IF implementation guidelines: content protection and security
	Commit Snapshot, 4 March 2020
	Table of Contents
	1. Purpose
	2. Scope
	3. Interpretation
	4. Disclaimer
	5. Core concepts of content protection and security
	6. Client reference architecture for encrypted content playback
	7. Content encryption and DRM
	7.1. Robustness
	7.2. W3C Encrypted Media Extensions

	8. Content protection constraints for CMAF
	8.1. Content protection data in CMAF containers

	9. Encryption and DRM signaling in the MPD
	9.1. Signaling presence of encrypted content
	9.2. default_KID defines the scope of DRM system interactions
	9.2.1. default_KID in hierarchical/derived/variant key scenarios

	9.3. Providing default DRM system configuration
	9.4. Delivering updates to DRM system internal state

	10. DASH-IF interoperable license request model
	10.1. Proof of authorization
	10.1.1. Obtaining authorization tokens
	10.1.2. Issuing authorization tokens
	10.1.3. Attaching authorization tokens to license requests

	10.2. Problem signaling and handling
	10.2.1. Problem type: not authorized to access content
	10.2.2. Problem type: insufficient proof of authorization

	10.3. Possible deployment architectures
	10.4. Passing a content ID to services

	11. DRM workflows in DASH clients
	11.1. Capability detection
	11.2. Selecting the DRM system
	11.3. Activating the DRM system
	11.3.1. Handling unavailability of content keys

	11.4. Content protection policies
	11.5. Performing license requests
	11.5.1. Efficient license acquisition

	12. Periodic re-authorization
	13. Controlling access rights with a key hierarchy
	14. Use of W3C Clear Key with DASH
	15. XML Schema for DASH-IF MPD extensions
	16. HTTPS and DASH
	Conformance
	Index
	Terms defined by this specification

	References
	Normative References
	Informative References

	Issues Index

