
DASH Player’s Application Events and Timed
Metadata Processing Models and APIs
(Community Review)

https://dashif.org/guidelines/Events-CR-v1.pdf

GitHub

DASH Industry Forum

Table of Contents

Living Document, 20 March 2020

This version:

Issue Tracking:

Editors:

1 DASH Player architecture for processing DASH events and timed metadata tracks

2 Event and Timed metadata sample timing models
2.1 Inband Event timing parameters
2.2 Dash Event message box format and event timing parameters
2.3 MPD Events timing model
2.4 Timed metadata sample timing model

3 Events and timed metadata sample dispatch timing modes
3.1 Dispatech timing
3.2 The Dispatch Processing Model
3.2.1 Prerequisite
3.2.2 Common process
3.2.3 on-receive processing
3.2.4 on-start processing

3.3 The event/metadata buffer model

4 Prose description of APIs
4.1 Event and metadata track subscription

5 Detailed processing

6 Externally defined terms

Conformance

Index
Terms defined by this specification

References

https://dashif.org/
https://dashif.org/guidelines/Events-CR-v1.pdf
https://github.com/Dash-Industry-Forum/Events/issues

CHANGE REQUEST

DASH-IF IOP CR rev - Current version: V4.3

Status: Draft Internal Review X Community Review Agreed

Title: DASH Player’s Application Events and Timed Metadata Processing Models and APIs

Source: DASH-IF IOP Event TF

Supporting
Companies:

Qualcomm Incorporated, LG Electronics, Sony, Ericsson, Nomor Research, Unified
Streaming, Tencent, <others>

Category: A Date: 2019-06-14

Use one of the following categories:
C (correction)
A (addition of feature)
B (editorial modification)

Reason for
change:

For the proper usage of Events and Timed Metadata distributed in DASH Media
Presentations, APIs pertaining to subscription and notification delivery are beneficially
defined between the DASH client and the application consuming the Events.

Summary of
change:

Addition of a client processing model for Events

Consequences
if not
approved:

Inconsistent implementations

Sections
affected:

New section X

Other
comments:

This document contains several notes. Feedback during community review is welcome
specifically on these topics.

Normative References

Disclaimer: This document is not yet final. It is provided for public review until the deadline mentioned
below. If you have comments on the document, please submit comments by one of the
following means:

Please add a detailed description of the problem and the comment.

Based on the received comments a final document will be published latest by the expected
publication date below, integrated in a new version of DASH-IF IOP, if the following additional
criteria are fulfilled:

Commenting
Deadline:

July 31st, 2019

Expected
Publication:

August 31st, 2019

This Figure demonstrates a generic architecture of DASH Player including DASH Events and timed metadata tracks
processing models.

at the github repository: https://github.com/Dash-Industry-Forum/Events/issues, or

dashif+iop@groupspaces.com with a subject tag [Events]

All comments from community review are addressed

The relevant aspects for the Conformance Software are provided

Verified IOP test vectors are provided

1. DASH Player architecture for processing DASH events and timed metadata
tracks

https://github.com/Dash-Industry-Forum/Events/issues

Figure 1 DASH Player architecture including the inband Event and Application-related timed metadata handling

In the above figure:

1. DASH Player processes the received MPD. The manifest information including the list of events schemes and
values, and timed metadata track schemes are passed to Application.

2. Application subscribes to the event and timed metadata track schemes in which it is interested, with the desired
dispatch mode.

3. If the manifest includes any MPD Events, the DASH Player parses them and appends them to the Event &
Timed Metadata Buffer.

4. Based on the MPD, the DASH Player manages the fetching and parsing of the Segments before appending
them to the Media Buffer.

5. Parsing a Segment includes:

1. Parsing the high-level boxes such as Segment Index (sidx) and Event Message boxes, and appending
Event Message boxes to the Event & Metadata Buffer.

2. For an Application-related timed metadata track, extracting the data samples, and appending them to
Event & Metadata Buffer.

3. For media segments, parsing the segments and appending them to the Media Buffer.

6. Event & Metadata Buffer is a FIFO buffer, passing the events and timed metadata samples to Event & Metadata
Synchronizer and Dispatcher function.

7. The DASH Player-specific Events are dispatched to DASH Player’s Control, Selection & Heuristic Logic, while
the Application-related Events and timed metadata track samples are dispatched to the application as the
following. If an Application is subscribed to a specific Event or timed metadata stream, dispatch the
corresponding event instances or timed metadata samples, according to the dispatch mode:

1. For on-receive dispatch mode, dispatch the Event information or timed metadata samples as soon as they
are received (or no later than LAT).

2. For on-start dispatch mode, dispatch the Event information or timed metadata samples at their associated
presentation time, using the synchronization signal from the media decoder.

Figure 2 presents the timing of an inband Events along the media timeline:

Figure 2 The inband event timing parameter on the media timeline

As shown in Figure 2, every inband Event can be described by three timing parameters on the media timeline:

An inband Event is inserted in the beginning of a Segment. Since each media segment has an earliest presentation
time equal to (LAT), LAT of the Segment carrying the Event Message box can be considered as the location of that
box on the media timeline. DASH Player has to fetch and parse the Segment before or at its LAT (at LAT when it’s
assumed that the decoding and rendering of the segment incurs practically zero delay). Therefore, the Event inserted
in a Segment at its LAT time will be ready to be processed and fetched no later than LAT on the media timeline.

The second timing parameter is Event Presentation/Start Time (ST). ST is the moment in the media timeline that the
Event becomes active. This value can be calculated using the parameters included in the DashEventMessageBox.

The third parameter is Event Duration (DU), the duration for which the Event is considered to be active. DU is also
signaled in the Event Message box using a specific value.

Table 1 shows the DASHEventMessageBox emsg box format defined in MPEG DASH:

2. Event and Timed metadata sample timing models

2.1. Inband Event timing parameters

1. Event Latest Arrival Time (LAT) which is the earliest presentation time of the Segment containing the Event
Message box.

2. Event Presentation/Start Time (ST) which is the moment in the media (MPD) timeline that the Event becomes
active.

3. Event duration (DU): the duration for which the Event is active

2.2. Dash Event message box format and event timing parameters

aligned(8) class DASHEventMessageBox extends FullBox (‘emsg’, version, flags = 0){

if (version==0) {

string scheme_id_uri;

string value;

unsigned int(32) timescale_v0;

unsigned int(32) presentation_time_delta;

unsigned int(32) event_duration;

unsigned int(32) id;

} else if (version==1) {

unsigned int(32) timescale_v1;

unsigned int(64) presentation_time;

unsigned int(32) event_duration;

unsigned int(32) id;

string scheme_id_uri;

string value;

}

unsigned int(8) message_data();

}

Figure 3 The emsg box format and parameters

The ST of an event can be calculated using values in its emsg box:

ST = \begin{cases} PeriodStart - \frac{SegmentBase@presentationTimeOffset}{SegmentBase@timescale} + LAT +
\frac{presentation_time_delta}{timescale_v0} \space \qquad version=0\\ PeriodStart -

\frac{SegmentBase@presentationTimeOffset}{SegmentBase@timescale} + \frac{presentation_time}
{timescale_v1}\qquad version=1 \end{cases}

Figure 4 Event Start Time of an inband event

Where PeriodStart is the corresponding Period‘s start time, and SegmentBase@presentationTimeoffset" and
SegmentBase@timescale belong to the corresponding Represenation.

Note: In the table above, parameters with timescale_v0 and timescale_v1 are same parameters. The additional
suffixes are for purpose of clear refenencing in the equation below. These parameters are defined as timescale
in [MPEGDASH].

Note: ST is always equal to or larger than LAT in both versions of emsg.

Note: Since the media sample timescales might be different than emsg’s timescale, ST might not line up with a
media sample if different timescales are used.

Note: If various Adaptation Sets carry the same events, different Adaptation Sets/Representations with different
PTOs, the presentation_time_delta and/or presentation_time values might be different per Adaptation
Set/Representation, i.e. the same emsg box can not be replicated over multiple Representations and/or
Adaptations Sets. Therefore, the use of same PTOs cross Adaptation Sets/Representations which carry the
same events is encouraged.

In this document, we use the following common variable names instead of some of above variables to harmonize
parameters between Inband events, MPD events, and timed metadata samples:

MPD Events carry a similar data model as inband Events. However, the former type is are carried in the MPD, under
the Period elements. Each Period event has EventStream element(s), defining the EventStream@schemeIdUri,
EventStream@value, EventStream@timescale and a sequences of Event elements. Each event may have
Event@presentationTime, Event@duration, Event@id and Event@messageData attributes, as shown in Table 2.

Element or Attribute Name Use Description

 EventStream specifies event Stream

 @xlink:href O specifies a reference to an external EventStream element

 @xlink:actuate OD

default:
onRequest

specifies the processing instructions, which can be either
"onLoad" or "onRequest".

This attribute shall not be present if the @xlink:href attribute is
not present.

 @schemeIdUri M identifies the message scheme. The string may use URN or
URL syntax. When a URL is used, it is recommended to also
contain a month-date in the form mmyyyy; the assignment of
the URL must have been authorized by the owner of the
domain name in that URL on or very close to that date. A URL
may resolve to an Internet location, and a location that does
resolve may store a specification of the message scheme.

 @value O specifies the value for the event stream element. The value
space and semantics must be defined by the owners of the
scheme identified in the @schemeIdUri attribute.

 @timescale O specifies the timescale in units per seconds to be used for the
derivation of different real-time duration values in the Event
elements.

If not present on any level, it shall be set to 1.

Note: In the case of CMAF, PeriodStart is the CMAF track’s earliest presentation time. If during the segment
creation, this time is not known, it is recommeded to use the presentation_time_delta.

scheme_id = scheme_id_uri

value = value

presentation_time = ST

duration = event_duration/timescale

message_data = message_data()

2.3. MPD Events timing model

 @presentationTimeOffset OD

Default: 0

specifies the presentation time offset of this Event Stream that
aligns with the start of the Period. Any Event contained in this
Event Stream is mapped to the Period timeline by using the
Event presentation time adjusted by the value of the
presentation time offset

The value of the presentation time offset in seconds is the
division of the value of this attribute and the value of the
@timescale attribute.

 Event 0 ... N specifies one event. For details see Table 35.

Events in Event Streams shall be ordered such that their
presentation time is non-decreasing.

Key

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Element or Attribute Name Use Description

Element or Attribute Name Use Description

 Event specifies an Event and contains the message of the
event. The content of this element depends on the event
scheme. The contents shall be either:

�� A string, optionally encoded as specified by
@contentEncoding

�� XML content using elements external to the
MPD namespace

For new event schemes string content should be used,
making use of Base 64 encoding if needed.

Note: The schema allows ��mixed�� content within
this element however only string data or XML elements
are permitted by the above options, not a combination.

 @presentationTime OD
default: 0

specifies the presentation time of the event relative to the
start of the Period taking into account the
@presentationTimeOffset of the Event Stream, if
present.

The value of the presentation time in seconds is the
division of the value of this attribute and the value of the
@timescale attribute.

If not present, the value of the presentation time is 0.

 @duration O specifies the presentation duration of the Event.

The value of the duration in seconds is the division of the
value of this attribute and the value of the
@timescale attribute.

The interpretation of the value of this attribute is defined
by the scheme owner.

If not present, the value of the duration is unknown.

 @id O specifies an identifier for this instance of the event.
Events with equivalent content and attribute values in the
Event element shall have the same value for this attribute.

The scope of the @id for each Event is with the same
@schemeIdURI and @value pair.

 @contentEncoding O specifies whether the information in the body and the
information in the @messageData is encoded.

If present, the following value is possible:

�� base64 the content is encoded as described in
IETF RFC 4648 prior to adding it to the field.

If this attribute is present, the DASH Client is expected to
decode the message data and only provide the decoded
message to the application.

Element or Attribute Name Use Description

 @messageData O specifies the value for the event stream element. The
value space and semantics must be defined by the
owners of the scheme identified in the @schemeIdUri
attribute.

NOTE: the use of the message data is discouraged
by content authors, it is only maintained for the
purpose of backward-compatibility. Including the
message in the Event element is recommended in
preference to using this attribute. This attribute is
expected to be deprecated in the future editions of
this document.

Key

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @.

Element or Attribute Name Use Description

Figure 5 MPD Event elements

As is shown in Figure 3, each MPD Event has three associated timing parameters along the media timeline:

Note that the first parameter is inherited from the Period containing the Events and only the 2nd and 3rd parameters
are explicitly included in the Event element. Each EventStream also has EventStream@timescale to scale the above
parameters.

Figure 3 demonstrates these parameters in the media timeline.

1. The PeriodStart Time (LAT) of the Period element containing the EventStream element.

2. Event Start Time (ST): the moment in the media timeline that a given MPD Event becomes active and can be
calculated from the attribute <{Event@presentationTime}>.

3. Event duration (DU): the duration for which the event is active that can be calculated from the attribute
<{Event@duration}>.

Figure 6 MPD events timing model

The ST of an MPD event can be calculated using values in its EventStream and Event elements:

ST = PeriodStart - \frac{EventStream@presentationTimeOffset}{EventStream@timescale} +
\frac{Event@presentationTime}{EventStream@timescale}

Figure 7 Event Start Time of MPD event

In this document, we use the following common variable names instead of some of above variables to harmonize
parameters between Inband events, MPD events, and timed metadata samples:

In which decode64() function is:

decode64(x) = \begin{cases} x\space\qquad\qquad\qquad\qquad\qquad \space \space \space \space
@contentEncoding\space Not \space Present\\ base64 \space decoding \space of \space (x) \qquad

@contentEncoding \space = \space base64 \end{cases}

Figure 8 decode64 function

Note that the DASH client shall Base64 decode the Event@messageData value if the received
Event@contentEncoding value is base64.

An alternative way to convey information relating to a media is using timed metadata tracks. Timed metadata tracks
are ISOBMFF formatted tracks that obey the following characteristics according to [ISOBMFF]:

scheme_id = EventStream@schemeIdUri

value = EventStream@value

presentation_time = ST

duration = Event@duration/EventStream@timescale

id = <{Event@id}>

message_data = decode64(Event@messageData)

2.4. Timed metadata sample timing model

1. The sample description box stsd in the MovieBox SHALL contain a sampleEntry that is a
URIMetaSampleEntry, to signal that the media samples contain metadata based on a urn in a URIBox to signal

Figure 4 shows the timing model for a simple ISOBMFF timed metadata sample.

Figure 9 Timing parameters of a timed metadata sample on the media timeline

As shown in this figure, the metadata sample timing includes metadata sample presentation time (ST) and metadata
sample duration (DU). Also one or more metadata samples are included in a segment with Segment earliest
presentation time (LAT).

Note that the metadata sample duration can not go beyond DASH Segments/ISOBMFF fragment duration for
fragmented metadata tracks, i.e. to the next fragment.

In this document, we use the following variable names instead of some of above variables to harmonize parameters
between Inband events, MPD events, and timed metadata samples used in dispatach process:

This figure shows two possible dispatch timing models for DASH events and timed metadata samples.

that scheme.

2. The Handler Box hdlr has handler_type set to meta to signal the fact that the track contains metadata

3. The null media header nmhd is used in the minf box

4. Contain metadata (non media data relating to presentation) embedded in ISOBMFF samples

scheme_id = timed metadata track URI , signalled in URIBox in URIMetaSampleEntry

timescale = timed metadata track timescale in mdhd box.

presentation_time = timed metadata sample presentation time/timescale

duration = timed metadata sample duration/timescale

message_data = timed metadata sample data in mdat

3. Events and timed metadata sample dispatch timing modes

3.1. Dispatech timing

Figure 10 The Application events and timed metadata dispatch modes

In this figure, two modes are shown:

Application is subscribed to a specific event stream identified by a (scheme/value) pair with a specific
dispatch_mode, either on start or on_receive, as described in § 4.1 Event and metadata track subscription.

The processing model varies depending on dispatch_mode.

DASH Player implements the following process:

1. on-receive Dispatch Mode: Dispatching at LAT or earlier. Since the segment carrying an emsg/metadata
sample has to be parsed before (or assuming zero decode/rendering delay as the latest at) LAT on the media
timeline, the event/metadata sample shall be dispatched at this time or before to Application in this mode.
Application has a duration of ST-LAT for preparing for the event. In this mode, the client doesn’t need to
maintain states of Application events or metadata samples either. Application may have to maintain the state for
any event/metadata sample, its ST and DU, and monitor its activation duration, if it needs to. Application may
also need to schedule each event/sample at its ST.

2. on-start Dispatch Mode: Dispatching exactly at ST, which is the start/presentation time of the event/metadata
sample. The DASH player shall dispatch the event to the application at the presentation time of the
corresponding media sample, or in the case of the start of playback after that moment and during the event
duration, at the earliest time within the event duration. In this mode, since Application receives the event/sample
at its start/presentation time, it may need to act on the received data immediately.

Note: According to ISO/IEC 23009-1, the parameter duration has a different meaning in each dispatch mode. In
the case of on-start, duration defines the duration starting from ST in which DASH Player shall disp atch the
event exactly once. In the nromal playback, the player dispatches the event at ST. However if DASH Player for
instance seek to a moment after ST and during the above duration, then it must dispatch the event immidiately. In
the case of on-receive, duration is a property of event instance and is defined by the scheme_id owner.

3.2. The Dispatch Processing Model

3.2.1. Prerequisite

3.2.2. Common process

DASH Player implements the following process when dispatch_mode = on_receive:

DASH Player set ups an Active Event Table for each subscribed scheme_uri/(value) in the case of dispatch_mode
= on_start. Active Event Table maintains a single list of emsg’s id that have been dispatched.

DASH Player implements the following process when dispatch_mode = on_start:

Along with the media samples, the event instances and timed metadata samples are buffered. The event/metadata
buffer should be managed with same scheme as the media buffer, i.e. as long as a media sample exists in the
media buffer, the corresponding events and/or metadata samples should be maintained in the event/metadata
buffer.

The event/timed metadata API is an interface defined between a “DASH player” as defined in DASH-IF, or a “DASH
client” as defined in 3GPP TS 26.247 or ISO/IEC 23009-1 and a device application in the exchange of subscription
data and dispatch/transfer of matching DASH Event or timed metadata information between these entities. The
Event/timed metadata API is shown at Figure 1.

The description of the API below is strictly functional, i.e. implementation-agnostic, is intended to be employed for the
specification of the API in Javascript for the dash.js open source DASH Player, and in IDL such as the OMG IDL or
WebIDL. For example, the subscribeEvent() method as defined below may be mapped to the existing
on(type,listener,scope) method as defined for the dash.js under MediaPlayerEvents.

As part of this API and prior to any operations, DASH Player provides a list of scheme_id/(value) listed in MPD

1. Parse the emsg/timed metadata sample and retrieve scheme_uri/(value).

2. If Application is not subscribed to the scheme_uri/(value) pair, end the processing of this emsg.

3.2.3. on-receive processing

Dispatch the event/timed metadata, including ST, id, DU, timescale and message_data as described in § 4
Prose description of APIs.

3.2.4. on-start processing

1. Derive the event instance/metadata sample’s ST

2. If the current media presentation time value is smaller than ST, then go to Step 5.

3. Derive the ending time ET= ST + DU.

4. If the current presentation time value is greater than ET, then end processing.

5. In the case of event: Compare the event’s id with the entries of Active Event Table of the same
scheme_uri/(value pair:

If an entry with the identical id value exists, end processing;

If not, add emsg’s id to the corresponding Active Event Table.

6. Dispatch the event/metadata message_data at time ST, or immediately if current presentation time is larger
then ST, as described in § 4 Prose description of APIs.

3.3. The event/metadata buffer model

4. Prose description of APIs

Note: In this document, the term "DASH Player" is used.

when it receives it. This list includes all events as well as scheme_id of all timed metadata tracks. At this point
Application is aware of the possible events and metadata delivered by DASH Player.

The subscription state diagram of DASH Player associated with the API is shown below in Figure 6:

Figure 11 State Diagram of DASH Player for the event/timed metadata API.

The scope of the above state diagram is the entire set of applicable events/timed metadata streams being
subscribed/unsubscribed, i.e. it is not indicating the state model of DASH Player in the context of a single
Event/timed metadata stream subscription/un-subscription.

The application subscribes to the reception of the desired event/timed metadata and associated information by the
subscribeEvent() method. The parameters to be passed in this method are:

4.1. Event and metadata track subscription

app_id – (Optional) A unique ID for the Application subscribing to data dispatch from DASH Player. Depending
on the platform/implementation this identifier may be used by DASH Player to maintain state information.

scheme_uri – A unique identifier scheme for the associated DASH Event/metadata stream of interest to the
Application. This string may use a URN or a URL syntax, and may correspond to either an MPD Event, an
inband Event, or a timed metadata stream identifier. The scheme_uri may be formatted as a regular expression
(regex). If a value of NULL is passed for scheme_uri, then Application subscribes to all existing event and
metadata schemes described in the MPD. In this case, the value of value is irrelevant.

value – A value of the event or timed metadata stream within the scope of the above scheme_uri, optional to
include. When not present, no default value is defined – i.e., no filtering criterion is associated with the Event
scheme identification.

dispatch_mode – Indicates when the event handler function identified in the callback_function argument should
be called:

The default mode for dispatch_mode should to be set to on_receive, i.e. if the dispatch_mode is not passed
during the subscribe_first operation, DASH Player should assume dispatch_mode = on_receive for that
specific subscription.

dispatch_mode = on_receive – provide the event/timed metadata sample data to the Application as soon
as it is detected by DASH Player;

dispatch_mode = on_start – provide the event/timed metadata sample data to the App at the start time of
Event message or at the presentation time of timed metadata sample.

callback_function – the name of the function to be (asynchronously) called for an event corresponding to the
specified scheme_uri/(value). The callback function is invoked with the arguments described below.

the DASH-IF beleives an explicit signaling of the dispatch mode is benifitial and will request MPEG to add the
support for it. Otherwise, either DASH-IF addes extensions or signaling of the dispatch mode would be considered
out-of-band.

Upon successful execution of the event/timed metadata subscription call (for which DASH Player will return a
corresponding acknowledgment), DASH Player shall monitor the source of potential Event stream information, i.e.,
the MPD or incoming DASH Segments, for matching values of the subscribed scheme_uri/(value). The parentheses
around value is because this parameter may be absent in the event/timed metadata subscription call. When a
matching event/metadata sample is detected, DASH Player invokes the function specified in the callbackFunction
argument with the following parameters. It should additionally provide to the Application the current presentation time
at DASH Player when performing the dispatch action. The parameters to be passed in this method are shown in
Table 3 below:

API Parameter MPD event Inband emsg Metadata Data Type ‘on-
receive’

‘on-
start’

scheme_id EventStream@schemeIdUri scheme_id_uri
timed
metadata
track URI

Y Y

value EventStream@value value Y Y

presentation_time Event@presentationTime presentation_time

timed
metadata
sample
presentation
time

unsigned
int(64)
in
milliseconds

Y N

duration Event@duration event_duration

timed
metadata
sample
duration

unsigned
int(32)
in
milliseconds

Y N

id Event@id id
unsigned
int(32)

Y N

message_data Event@messageData message_data()

timed
metadata
sample data
in mdat

unsigned
int(8) x
messageSize

Y Y

Y= Yes, N= NO, O= Optional
Figure 12 Event/timed metadata API parameters and datatypes

When the duration of the event is unknown, the vairable duration shall be set to its maximum value (xFFFFFFFF =
4,294,967,295).

Note: ISO/IEC 23009-1 does not include amy explicit signaling for the desired dispatch mode in MPD or timed
metadata track. In the current design, Application relay its desired dispatch mode to DASH Player when it
subscribes to an event stream or timed metadata track. In this approach, the scheme owner should consider the
dispatch mode as part of the scheme design and define whether any specific dispatch mode should be selected
during the design of the scheme.

Note: (Editor’s Note-to be removed at the end of Community Review Period) If any service provider or application
developer beleives an explicit signaling of dispatch mode is needed for some use-cases, they are requested to
provide such use-case during Community Review Period of this document to DASH-IF for considering
introducing a @dispatchMode attribute in MPD and submitting the request to MPEG.

In order to remove a listener the unsubscribeEvent() function is called with the following arguments:

If a specific listener is given in the callback_function argument, then only that listener is removed for the specified
scheme_uri/(value). Omitting or passing null to the callback_function argument would remove all event listeners for
the specified scheme_uri/(value).

As shown in Figure 1, the event/metadata buffer holds the events or metadata samples to be processed. We
assume that this buffer have same data structure to hold events or metadata. We use Table 3 to define this
Event/Metadata Internal Object (EMIO):

event-metadata-internal-object {

string scheme_id_uri;

string value;

unsigned int(32) presentation_time;

unsigned int(32) duration;

unsigned int(32) id;

unsigned int(8) message_data();

}

Figure 13 The Event/Metadata Internal Object (EMIO)

The process for converting the received event/metadata sample to EMIO is as following:

Note: In the case of ‘emsg’ version 0, DASH Player is expected to calculate presentation_time from
presentation_time_delta.

app_id (Optional)

scheme_uri - A unique identifier scheme for the associated DASH Event stream of interest to the Application.

value

callback_function

5. Detailed processing

1. For MPD event

For each period:

Parse each EventStream

Get Eventstream common parameters

For each Event Stream:Parse each event

For each event

calculate presentation time and event duration

add it to EMIO

2. For inband event

For each Segment

Parse event boxes as well as moof

calculate EPT of segment

For each event:

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

See [MPEGDASH]

map emsg box parameters to EMIO

3. For simple metadata samples

For each Segment

Parse moof

For each sample:

Parse the formant

map the data to EMIO

6. Externally defined terms

cmaf

Event@contentEncoding

Event@duration

Event@id

Event@messageData

Event@presentationTime

EventStream@schemeIdUri

EventStream@timescale

EventStream@value

event_duration

id

message_data()

presentation_time

presentation_time_delta

scheme_id_uri

SegmentBase@presentationTimeoffset

SegmentBase@timescale

timescale

value

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and
notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are set apart from the normative text
with class="example", like this:

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

Conformance

EXAMPLE 1
This is an example of an informative example.

Note, this is an informative note.

Index

Terms defined by this specification

Active Event Table, in §3.2.4

cmaf, in §6

Event@contentEncoding, in §6

event_duration, in §6

Event@duration, in §6

Event@id, in §6

Event@messageData, in §6

Event@presentationTime, in §6

EventStream@schemeIdUri, in §6

EventStream@timescale, in §6

EventStream@value, in §6

id, in §6

message_data(), in §6

on-receive, in §3.1

on-start, in §3.1

presentation_time, in §6

presentation_time_delta, in §6

scheme_id_uri, in §6

SegmentBase@presentationTimeoffset, in §6

SegmentBase@timescale, in §6

timed metadata sample data in mdat, in §2.4

timed metadata sample duration, in §2.4

Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format. December
2015. International Standard. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

Information technology — Dynamic adaptive streaming over HTTP (DASH) — Part 1: Media presentation
description and segment formats. December 2019. Published. URL: https://www.iso.org/standard/79329.html

S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119

timed metadata sample presentation time, in §2.4

timed metadata track URI, in §2.4

timescale, in §6

value, in §6

References

Normative References

[ISOBMFF]

[MPEGDASH]

[RFC2119]

↑
→Loading [MathJax]/extensions/MathEvents.js

http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
https://www.iso.org/standard/79329.html
https://www.iso.org/standard/79329.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119

	DASH Player’s Application Events and Timed Metadata Processing Models and APIs (Community Review)
	Living Document, 20 March 2020
	Table of Contents
	1. DASH Player architecture for processing DASH events and timed metadata tracks
	2. Event and Timed metadata sample timing models
	2.1. Inband Event timing parameters
	2.2. Dash Event message box format and event timing parameters
	2.3. MPD Events timing model
	2.4. Timed metadata sample timing model

	3. Events and timed metadata sample dispatch timing modes
	3.1. Dispatech timing
	3.2. The Dispatch Processing Model
	3.2.1. Prerequisite
	3.2.2. Common process
	3.2.3. on-receive processing
	3.2.4. on-start processing

	3.3. The event/metadata buffer model

	4. Prose description of APIs
	4.1. Event and metadata track subscription

	5. Detailed processing
	6. Externally defined terms
	Conformance
	Index
	Terms defined by this specification

	References
	Normative References

