===DASH

s = mm [ndustry Forum

Guidelines for Implementation: DASH-IF

Interoperability Points
Living Document, 25 September 2019

This version:
https://dashif.org/guidelines/

Issue Tracking:
GitHub
Inline In Spec

Editors:
DASH Industry Forum

Table of Contents

1 Purpose

2 Interpretation

3 Disclaimer

4 DASH and related standards

41 Relationship to the previous versions of this document

4.2 Structure of a DASH presentation

5 Interoperability requirements
5.1 CMAF and ISO BMFF Requirements
52 Timing model

5.21 Conformance requirements
522 MPD Timeline

523 Periods

524 Representations

525 Sample timeline

5.2.6 Clock drift is forbidden

527 Media segments

5271 Media segment duration deviation
5272 Segments must be aligned
528 Period connectivity

5281 Period continuity

529 Dynamic MPDs

5291 Real time clock synchronization
5292 Availability

5293 Time shift buffer

5294 Presentation delay

5295 MPD updates

52951 Adding content to the MPD
52952 Removing content from the MPD
52953 End of live content

5296 MPD refreshes

5.2.10 Timing of stand-alone IMSC1 and WebVTT text files
5.2.11 Forbidden techniques

5212 Examples

52121 Offer content with imperfectly aligned tracks
52122 Split a period

52123 Change the default_KID

https://dashif.org/
https://dashif.org/guidelines/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues

53 Segment addressing modes

5.3.1 Indexed addressing

532 Structure of the index segment

53.2.1 Moving the period start point (indexed addressing)
5.3.3 Explicit addressing

53.3.1 Moving the period start point (explicit addressing)
534 Simple addressing

5341 Inaccuracy in media segment timing when using simple addressing
5342 Moving the period start point (simple addressing)
5343 Converting simple addressing to explicit addressing
54 Adaptation set contents

55 Adaptation set types

5.6 Video adaptation set constraints

5.7 Audio adaptation set constraints

5.8 Text adaptation set constraints

5.9 Accessing resources over HTTP

5.91 MPD URL resolution

592 Segment URL resolution

593 Conditional MPD downloads

594 Expanding URL template variables

5.10 Minimum buffer time signaling
5.11 Large timescales and time values
5.12 MPD size

5.13 Representing durations in XML

6 Commonly used features

6.1 Seamless switching

6.2 Preview thumbnails for seeking and navigation
6.3 Trick mode

6.4 Bitstream switching

6.5 Switching across adaptation sets

6.6 XLink

6.7 Update signaling via in-band events

6.8 Specifying initial position in presentation URL

7 Content annotation and selection

71 Annotations for content selection

7.2 Content model

7.21 Signaling alternative content

722 Signaling associated content

7.3 Client processing reference model

8 On-demand services

8.1 Surviving transforming boxes and other adaptation middleboxes
9 Live services

9.1 Selecting the time shift buffer size

9.2 Selecting the suggested presentation delay
9.3 Selecting the media segment duration

94 Safety margins in availability timing

9.5 Selecting the minimum update period

9.6 Robust and seamless period transitions
9.7 Determining the live edge

9.8 Trick mode for live services

9.9 DVB-DASH alignment
9.10 Converting a live service to an on-demand service
9.11 Reliable and consistent-delay live service

9.11.1 Consistent latency

9.11.2 Unanticipated new periods

9.11.3 Media segment duration variations
9.114 Losses and operational failures

9.11.5 Minimizing MPD updates
9.11.6 Proposed service configuration and MPD generation logic

9.11.6.1 Service configuration for simple live

9.11.6.2 Service configuration for main live

10 Ad insertion

10.1 Remote elements

10.2 Periods

10.3 Segment availability

104 Seamless transition

10.5 Period labeling

10.6 DASH events

10.7 MPD updates

10.8 Session information

10.9 Tracking and reporting
10.10 Ad insertion architectures
10.11 Server-based architecture
10.11.1 Implementation basics
10.11.2 Remote period elements
10.11.3 Timing and dereferencing
10.11.4 Asset identifiers

10.11.5 MPD updates

10.11.6 MPD events

10.11.7 Workflows

10.11.8 Linear workflow

10.11.8.1 Cue interpretation by the MPD generator
10.11.82 Cue interpretation by the packager
10.11.83 Multiple cue messages

10.11.84 Cancelation

10.11.85 Early termination

10.11.86 Informational cue messages
10.11.87 Ad decision

10.11.9 On demand workflow

10.11.91 Capture to VoD

10.11.9.2 Slates and ad replacement
10.11.93 Blackouts and alternative content
10.11.94 Tracking and reporting

10.11.10 Examples

10.11.11 Use of query parameters
10.12 App-based architecture
10.12.1 Implementation basics
10.12.2 SCTE 35 events

10.12.3 Asset identifiers

10.12.4 Linear workflow

10.12.5 On demand workflow
10.13 Assetldentifier extensions
10.14 Remote period extensions
10.15 User-defined event extensions
10.15.1 Cue message

10.15.2 Reporting

10.15.3 Ad insertion event streams

11 Media coding technologies

111 H.264 (AVC)

11.2 H.265 (HEVC)

1.3 Decoder configuration with H.264 and H.265
114 Bitstream switching with H.264 and H.265
11.5 Thumbnail images

11.6 HE-AACV2 audio (stereo)

11.7 HE-AACV2 audio (multichannel)

11.8 CEA-608/708 Digital Television (DTV) Closed Captioning
11.9 Timed Text (IMSC1)

11.10 Enhanced AC-3 (Dolby Digital Plus)

11.11 Dolby TrueHD

1112 AC+4

11.13 DTS-HD

11.14 MPEG Surround

11.15 MPEG-H 3D Audio

11.16 MPEG-D Unified Speech and Audio Coding
11.17 UHD HEVC 4K

11.17.1 TS 103.433 HDR dynamic metadata
11.17.2 HEVC UHD compatibility aspects

11.18 HEVC HDRPQ10

11.18.1 HEVC PQ10 HDR dynamic metadata
11.18.2 SMPTE 2094-10 HDR dynamic metadata
11.18.3 SMPTE 2094-40 HDR dynamic metadata
11.19 UHD Dual-Stream (Dolby Vision)

11.191 Requirements for enhancement layer

1120 VP9

11.20.1 HD

11.20.2 UHD

11.20.3 HDR

12 Content protection and security
121 Introduction

12.2 HTTPS and DASH

12.3 Content Encryption

124 ISOBMFF Support for Common Encryption and DRM
12.4.1 ISOBMFF Structure Overview

12.4.2 ISOBMFF Content Protection Constraints

12.5 DASH MPD Support for Common Encryption and DRM
12.51 MPD Structure Overview

12511 ContentProtection Element for the mpaprotection Scheme
12512 ContentProtection Element for the UUID Scheme
12513 cenc: Namespace Extension

12.5.2 MPD Content Protections Constraints

12.6 Mix ISOBMFF and MPD Content Protections Constraints
12.7 Client Interactions with DRM Systems

12.8 Additional Constraints for Specific Use Cases

12.8.1 Periodic Re-Authorization

12.8.1.1 Periodic Re-Authorization Content Protections Constraints
128.1.2 Implementation Options

12.8.2 Low Latency

12821 Licenses Pre-Delivery

12822 Key Hierarchy and CMAF Chunked Content

12.8.3 Use of W3C Clear Key with DASH
12.8.4 License Acquisition URL XML Element Laurl
12.84.1 ClearKey Example Using Laurl

13 Annex B
14 Annex: Dolby Vision streams within ISO BMFF
15 Annex: Signaling Dolby Vision profiles and levels
16 Annex: Display management message
17 Annex: Composing metadata message
18 Annex: Sample Dual-layer MPD
19 Externally defined terms
Conformance

Index
Terms defined by this specification

References

Normative References
Informative References

Issues Index

1. Purpose

The scope of the DASH-IF InterOperability Points (IOPs) defined in this document is to provide support interoperable
services for high-quality video distribution based on MPEG-DASH and related standards. The specified features
enable relevant use cases including on-demand and live services, ad insertion, content protection and subtitling. The
integration of different media codecs into DASH-based distribution is also defined.

The guidelines are provided in order to address DASH-IF members' needs and industry best practices. The
guidelines provide support the implementation of conforming service offerings as well as the DASH client
implementation. While alternative interpretations may be equally valid in terms of standards conformance, services
and clients created following the guidelines defined in this document can be expected to exhibit highly interoperable
behavior between different implementations.

Any identified bugs or missing features may be submitted through the DASH-IF issue tracker at
https://gitreports.com/issue/Dash-Industry-Forum/DASH-IF-IOP.

2. Interpretation

Requirements in this document describe required service and client behaviors that DASH-IF considers
interoperable:

1. If a service provider follows these requirements in a published DASH service, that service is likely to experience
successful playback on a wide variety of clients and exhibit graceful degradation when a client does not support
all features used by the service.

2. Ifa clientimplementer follows the client-oriented requirements described in this document, the client plays the
content conforming to this document.

This document uses statements of fact when describing normative requirements defined in referenced specifications
such as [MPEGDASH] and [MPEGCMAF]. [[RFC2119!]] statements (e.g. "SHALL", "SHOULD" and "MAY") are
used when this document defines a new requirement or further constrains a requirement from a referenced

document. In order to clearly separate the requirements of referenced specifications vs. the additional requirements
set by this document, the normative statements in each section of this document are separated into two different
groups, ones starting with "(referenced specification) requires/recommends:" and the ones starting with "This
document requires/recommends:". See also Conformance.

All DASH presentations are assumed to be conforming to an IOP. A service may explicitly signal itself as conforming
by including the string https://dashif.org/guidelines/ in MPD@profiles.

There is no strict backward compatibility with previous versions - best practices change over time and what was
once considered sensible may be replaced by a superior approach later on. Therefore, clients and services that
were conforming to version N of this document are not guaranteed to conform to version N+1.

3. Disclaimer

This is a document made available by DASH-IF. The technology embodied in this document may involve the use of
intellectual property rights, including patents and patent applications owned or controlled by any of the authors or
developers of this document. No patent license, either implied or express, is granted to you by this document.
DASH-IF has made no search or investigation for such rights and DASH-IF disclaims any duty to do so. The rights
and obligations which apply to DASH-IF documents, as such rights and obligations are set forth and defined in the
DASH-IF Bylaws and IPR Policy including, but not limited to, patent and other intellectual property license rights and
obligations. A copy of the DASH-IF Bylaws and IPR Policy can be obtained at http://dashif.org/.

The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable
law, this material is provided AS IS, and the authors and developers of this material and DASH-IF hereby disclaim all
other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied
warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of
responses, of workmanlike effort, and of lack of negligence.

In addition, this document may include references to documents and/or technologies controlled by third parties.
Those third party documents and technologies may be subject to third party rules and licensing terms. No intellectual

property license, either implied or express, to any third party material is granted to you by this document or DASH-IF.
DASH-IF makes no any warranty whatsoever for such third party material.

Note that technologies included in this document and for which no test and conformance material is provided, are
only published as a candidate technologies, and may be removed if no test material is provided before releasing a
new version of this guidelines document. For the availability of test material, please check http://www.dashif.org.

4. DASH and related standards

DASH is a set of manifest and media formats for adaptive media delivery defined by [MPEGDASH)]. Dynamic
Adaptive Streaming over HTTP (DASH) is initially defined in the first edition of ISO/IEC 23009-1 which was
published in April 2012 and some corrections were done in 2013. In May 2014, ISO/IEC published the second
version of ISO/IEC 23009-1 that includes additional features and provide additional clarifications. ISO/IEC published
the third and fourth editions of ISO/IEC 23009-1 in 2019 and 2020.

ISO/IEC also published the 1st and 2nd edition of ISO/IEC 23000-19 'Common media application format (CMAF) for
segmented media' [MPEGCMAF]in 2018 and 2019. CMAF defines segment and chunk format based on ISO Base
Media File Format, optimized for streaming delivery. CMAF defines a set of well defined constraints that allows
interoperability for media deliverable objects, which are compatible with [MPEGDASH].

This document is based on the 4th edition DASH [MPEGDASH)] and 2nd edition CMAF [MPEGCMAF
specifications.

DASH together with related standards and specifications is the foundation for an ecosystem of services and clients
that work together to enable audio/video/text and related content to be presented to end-users.

DASH DASH-IF guidelines
CMAF H.264
DASH-IF |OP
IMSC

Other standards
and specifications

Figure 1 This document connects DASH with international standards, industry specifications and DASH-IF guidelines.

MPEGDASH] defines a highly flexible set of building blocks that needs to be constrained to a meaningful subset to
ensure interoperable behavior in common scenarios. This document defines constraints that limit DASH features to
those that are considered appropriate for use in interoperable clients and services.

This document was generated in close coordination with [DVB-DASH]. The features are aligned to the extent
considered reasonable. The tools and features are aligned to the extent considered reasonable. In addition, DASH-
IF worked closely with ATSC to develop a DASH profile for ATSC3.0 for broadcast distribution [ATSC3].

Clients consuming DASH content will need to interact with the host device’s media platform. While few constraints
are defined on these interactions, this document does assume that the media platform implements APIs that are
equivalent to the popular Media Source Extensions (MSE) and Encrypted Media Extensions (EME).

4.1. Relationship to the previous versions of this document

There is no strict backward compatibility with previous versions of this document - best practices change over time
and what was once considered sensible may be replaced by a superior approach later on. Therefore, clients and
services that were conforming to version N of this document are not guaranteed to conform to version N+1.

The initial two versions of this document where based on the first edition of ISO/IEC 23009-1. Version 4.3 was
mostly relying on the third edition of ISO/IEC 23009-1.

This version of the document relies on the 4th edition of ISO/IEC 23009-1 that was technically frozen in July 2019 and
is expected to be published by the end of 2019 as ISO/IEC 23009-1:2020.

4.2. Structure of a DASH presentation
MPEGDASH] specifies the structure of a DASH presentation, which consists primarily of:

1. The manifest or MPD, which describes the content and how it can be accessed.

2. Data containers that clients will download over the course of a presentation in order to obtain media samples.

Defines

MPEG DASH

i

iCMAF segment i CMAF header i ISOBMFF sidx

Defines Defines

Based on
MPEG CMAF ISOBMFF

Figure 2 Relationships of primary DASH data structure and the standards they are defined in.

The MPD is an XML file that follows a schema defined by [MPEGDASH)]. This schema defines various extension
mechanisms for 3rd parties. This document defines some extensions, as do other industry specifications.

MPEGDASH] defines two data container formats, one based on [[SOBMFF] and the other MPEG2TS]. However,
only the former is used in modern solutions. This document only supports services using the [ISOBMFF] container
format.

['MPEGCMAF] is the constrained media format based on [[SOBMFF], specifically designed for adaptive streaming.
This document uses [MPEGCMAF] compatible data containers.

Note: The relationship to [MPEGCMAF] is constrained to the container format. In particular, there is no
requirement to conform to [MPEGCMAF] media profiles.

The data container format defines the physical structure of the following elements described by the MPD:

1. Eachrepresentation in the MPD references an initialization segment.

2. Eachrepresentation in the MPD references any number of media segments.

3. Some representations in the MPD may reference an index segment, depending on the addressing mode used.

Note: HLS (RFC8216) also support (MPEGCMAF]). Therefore, under certain constraints, the content encoded in
(IMPEGCMAF]) can be delivered using MPD or HLS m3u8 manifest format.

[MPEGDASH] [MPEGCMAF] [ISOBMFF]

(media) segment, subsegment CMAF segment

initialization segment CMAF header

index segment, segment index segment index box (sidx)

Figure 3 Quick reference of closely related terms in different standards.

Note: [MPEGDASH] has the concept of "segment" (URL-addressable media object) and "subsegment" (byte
range of URL-addressable media object), whereas [MPEGCMAF] does not make such a distinction. This
document uses [MPEGCMAF] segment terminology, with the term segment in this document being equivalent to
"CMAF segment" which in turns means "DASH media segment or media subsegment", depending the employed
DASH profile.

5. Interoperability requirements

The DASH-related standards enable various options for each feature supported by these standards. Limiting options
and in some cases additional constraints are needed to establish interoperable behavior between service offerings
and client implementations.

This chapter defines the requirements that enable DASH services and clients to provide interoperable behavior. To

be compliant to a feature in this document, each service offering or client must conform to specific requirements of
that feature, outline in this document.

I ISSUE 1 'Need to add a paragraph on interoperability on baseline, if we have any

5.1. CMAF and ISO BMFF Requirements

Media segments SHALL be compliant to MPEGDASHCMAFPROFILE].

Note: MPEGDASHCMAFPROFILE] defines the media segment format using [MPEGCMAF], which is largely
based on [ISOBMFF].

5.2. Timing model

The purpose of this chapter is to give a holistic overview of DASH presentation timing and related segment
addressing. Itis not intended to provide details of the timing model and all possible uses of the attributes in [MPEGD

ASH].

In order to achieve higher interoperability, DASH-IF’s Implementation Guidelines allow considerably limited options
than the ones provided by [MPEGDASH], constraining services to a specific set of reasonably flexible behaviors that
are highly interoperable with modern client platforms. This chapter covers the timing model and related segment
addressing schemes for these common use-cases.

5.2.1. Conformance requirements
This document adds additional constraints to [MPEGDASH] timing requirements.
To be conformant to this document:

e Content generated by a service offering SHALL be compliant to

o [MPEGDASH] and [MPEGDASHCMAFPROFILE].

o Additional constraints in following sections

e Clients SHALL be compliant to the constraints in the following sections.

5.2.2. MPD Timeline

MPEGDASH] defines DASH general timing model in its clause 4.3.

The MPD defines the MPD timeline of a Media Presentation, which serves as the baseline for all scheduling
decisions made during DASH presentation playback.

There exist two types of Media Presentations, indicated by the MPD@type.

The playback of a static MPD (defined in [MPEGDASH] as a MPD with MPD@type="static") does not depend on
the mapping of the MPD timeline to real time. This means that entire presentation is available at any time and a
client can play any part of the presentation at any time (e.g. it can start playback at any time and seek freely within the
entire presentation).

The MPD timeline of a dynamic MPD (defined in[MPEGDASH] as a MPD with MPD@type="dynamic") has a fixed
mapping to wall clock time, with each point on the MPD timeline corresponding to a point in real time. This means
that segments of the presentation get available over time. Clients can introduce an additional offset with respect to
wall clock time for the purpose of maintaining an input buffer to cop with network bandwidth fluctuations.

Note: In addition to mapping the MPD timeline to wall clock time, a dynamic MPD can be updated during the
presentation. Updates may add new periods and remove or modify existing ones including adding new segments
with progress in time, though some restrictions apply. See § 5.2.9.5 MPD updates.

The time zero on the MPD timeline of a dynamic MPD is mapped to the point in wall clock time indicated by
MPD@availabilityStartTime.

The ultimate purpose of the MPD is to enable the client to obtain media samples for playback. Additionally it may
possibly dynamically switch between different bitrate of the same content to adopt to the network bandwidth
fluctuation. The following data structures are most relevant to locating and scheduling the samples:

1. The MPD consists of consecutive periods which map data onto the MPD timeline.
2. Each period contains of one or more representations, each of which provides media samples inside a
sequence of media segments.

3. Representations within a period are grouped in adaptation sets, which associate related representations and
decorate them with metadata.

e ——=, e

S . .
Period 1! Period 2 Period 3i
| 1
____________ I_____\ ’____________I_____-l ’____________I_____-l]
Adaptation set| Adaptation set| Adaptation set|
{ | |
| | |
Representation : Representation I Representation I
360p video | 480p video | 480p video
Representation : Representation : I Representation
480p video : 1080p video : 1080p video !
Representation I |
1080p video b
| I

Figure 4 The primary elements described by an MPD.

5.2.3. Periods

An MPD defines an ordered list of one or more consecutive periods. A period is both a time span on the MPD
timeline and a definition of the data to be presented during this time span. Period timing is relative to the zero point
of the MPD timeline.

Period 1 Period 2 Period 3 Period 4

Figure 5 An MPD is a collection of consecutive periods.

Common reasons for defining multiple periods are:

e Assembling a presentation from multiple self-contained pieces of content.
e Inserting ads in the middle of existing content and/or replacing spans of existing content with ads.

e Adding/removing certain representations as the nature of the content changes (e.g. a new title starts witha
different set of offered languages).

e Updating period-scoped metadata (e.g. codec configuration or DRM signaling).
Periods are self-contained - a client is not required to know the contents of another period in order to correctly

present a period. Knowledge of the contents of different periods may be used by a client to achieve seamless period
transitions, especially when working with period-connected representations.

EXAMPLE 1
The below static MPD consists of two 20-second periods. The duration of the first period is calculated using the
start point of the second period. The total duration of the presentation is 40 seconds.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" type="static">
<Period>

</Period>
<Period start="PT20S" duration="PT20S">

</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

MPEGDASH] clause 5.3.2 defines the period’s requirements in MPD authoring. Among others it requires the
followings:

1. All periods are consecutive and non-overlapping. A period may have a duration of zero.

Note: A period with a duration of zero might, for example, be the result of ad-insertion logic deciding not to insert
any ad.

2. Ina static MPD, the first period starts at the time zero of the MPD timeline. In a dynamic MPD, the first period
starts at or after the zero point of the MPD timeline.

3. Ina static MPD, either the last period has a Period@duration or MPD@mediaPresentationDuration exists.

4. Ina dynamic MPD, the last period may have a Period@duration, in which case it has a fixed duration. If without
Period@duration, the last period in a dynamic MPD has an unknown duration, which allows to extend the
timeline indefinitely.

Note: In a dynamic MPD, a period with an unknown duration may be converted to fixed-duration by an MPD
update. Periods in a dynamic MPD can also be shortened or removed entirely under certain conditions.
However, Media Presentation is defined until (current wall clock time + MPD@minimumUpdatePeriod), by which the
current MPD is still valid. See § 5.2.9.5 MPD updates.

5. MPD@mediaPresentationDuration may be present. If present, it accurately matches the duration between the
time zero on the MPD timeline and the end of the last period. Clients must calculate the total duration of a static
MPD by adding up the durations of each period and must rely on the presence of

MPD@mediaPresentationDuration.

Note: This calculation is necessary because the durations of XLink periods can only be known after the XLink is
resolved. Therefore it is impossible to always determine the total MPD duration on the service side as only the
clientis guaranteed to have access to all the required knowledge.

5.2.4. Representations

A representation is a sequence of segment as defined by [MPEGDASH] 5.3.1 and 5.3.5. A Representation
element is a collection of these segment references and a description of the samples within the referenced media

segments.

In practice, each representation usually belongs to exactly one adaptation set and often belongs to exactly one
period, although a representation may be connected with a representation in another period.

Each segment reference addresses a media segment that corresponds to a specific time span on the sample
timeline. Each media segment contains samples for a specific time span on the sample timeline.

Note: Simple addressing allows the actual time span of samples within a media segment to deviate from the
corresponding time span described in the MPD ((MPEGDASH] 7.2.1). All timing-related clauses in this
document refer to the timing described in the MPD (i.e. according to MPD timeline)unless otherwise noted.

The exact mechanism used to define segment references depends on the addressing mode used by the
representation.

This document requires the following additional requirement:

e Allrepresentations in the same adaptation set SHALL use the same addressing mode.

As recommended by [MPEGDASH] 7.2.1:

e There should not be gaps or overlapping media segments in a representation.

This document additionally requires:

e |na static MPD a representation SHALL contain enough segment references to cover the entire time span of
the period.

Period

Segment Segment Segment Segment Segment Segment

Period

Segment Segment Segment Segment Segment

Period

Segment Segment Segment Segment Segment <«

Period

XX S

Segment Segment Segment Segment Segment

Figure 6 In a static MPD, the entire period must be covered with media segments.

e Inadynamic MPD, a representation element SHALL contain enough segment references to cover the time span
of the period that intersects with the time shift buffer. However, gaps in this time span are allowed.

Periad M

Segrmert Segrmett Segment Segmett Segment

Feriod MH+1

Segment Segment Segment Segment Segment

*

Time shift buffer ‘

Figure 7 In a dynamic MPD, the time shift buffer determines the set of required segment references in each representation.
Media segments filled with gray need not be referenced due to falling outside the time shift buffer, despite falling within the
bounds of a period.

Note: In a dynamic MPD, each Media segments only become available when its end point is within their
availability window (This time may need to be adjusted by availabilityTimeOffset (need to be defined) and
@availabilityTimeComplete values) (MPEGDASH] 5.3.9.5.1 and 5.3.5.3). It is a valid situation that a media
segment is required to be referenced but is not yet available.

As required by [MPEGDASH] 5.3.9.5.3:

e A dynamic MPD remains valid for its entire validity duration after publishing. In other words, a dynamic MPD
supplies enough segment references to allow the time shift buffer to extend to now +
MPD@minimumUpdatePeriod, where now is the current time according to the synchronized clock.

As allowed by [MPEGDASH] 7.2.1:

e Media segment start/end points may be unaligned with period start/end points except when using simple
addressing. This possible offset is signaled by @eptDelta.

An unnecessary segment reference is one that is not defined as required by this chapter.

This document requires the following additional requirements to [MPEGDASH]:

¢ Ina static MPD, a representation SHALL NOT contain unnecessary segment references, except when using
indexed addressing in which case such segment references MAY be present.

e Ina dynamic MPD, a representation SHALL NOT contain unnecessary segment references except when any of
the following applies, in which case an unnecessary segment reference MAY be present:

1. The segment reference is for future content and will eventually become necessary.

2. The segment reference is defined via indexed addressing.

3. The segment reference is defined by an <s> element that defines multiple references using s@r, some of which
are necessary.

4. Removal of the segment reference is not allowed by content removal constraints.

This document also requires the following requirements for clients:

e Clients SHALL NOT present any samples from media segments that are entirely outside the period, even if such
media segments are referenced.

Period 1
Segment Segment

Sample Sample Sample Sample Sample Sample | Sample @ Sample

Period 2
Segment Segment
Sample Sample Sample Sample Sample Sample | Sample | Sample

Figure 8 Media segments and samples need not align with period boundaries. Some samples may be entirely outside a period
(marked gray) and some may overlap the period boundary (yellow).

¢ [fa media segment overlaps a period boundary, clients SHOULD NOT present the samples that lie outside the
period and SHOULD present the samples that lie either partially or entirely within the period.

Note: In the end, which samples are presented is entirely up to the client. It may sometimes be impractical to
present media segments only partially, depending on the capabilities of the client platform, the type of media
samples involved and any dependencies between samples.

5.2.5. Sample timeline

The samples within a representation exist on a linear sample timeline defined by the encoder that created the
samples. One or more sample timelines are mapped onto the MPD timeline by metadata stored in or referenced by
the MPD (IMPEGDASH] 7.3.2).

|
MPD timeline

| |
Sample timeline (video, @timescale=24, @presentationTimeOffset=85000) ‘

| |
Sample timeline (audio, @timescale=90000, @presentationT imeOffset=50000000) ‘

Figure 9 Sample timelines are mapped onto the MPD timeline based on parameters defined in the MPD.

Note: A sample timeline is linear - encoders are expected to use an appropriate timescale and sufficiently large
timestamp fields to avoid any wrap-around. If wrap-around does occur, a new period must be started in order to
establish a new sample timeline.

The sample timeline is formed after applying any [ISOBMFF] edit lists (MPEGDASH,] 7.3.2).

This document additionally requires:

e The same sample timeline SHALL be shared by all representations in the same adaptation set.
Representations in different adaptation sets MAY use different sample timelines.

e The sample timeline is measured in timescale units defined as a number of units per second. This value (the
timescale) SHALL be present in the MPD as SegmentTemplate@timescale Or SegmentBase@timescale

(depending on the addressing mode).
Note: While optional in[MPEGDASH)], the presence of the @timescale attribute is required by the interoperable

timing model because the default value of 1 is unlikely to match any real-world content and is far more likely to
indicate an unintentional content authoring error.

Period

Figure 10 @presentationTimeOffset is the key component in establishing the relationship between the MPD timeline and a
sample timeline.

The point on the sample timeline indicated by @presentationTimeOffset is equivalent to the period start point on the
MPD timeline (MPEGDASH,] Table 15). The value is provided by SegmentTemplate@presentationTimeOffset or
SegmentBase@presentationTimeOffset, depending on the addressing mode, and has a default value of 0 timescale
units.

Note: To transform a sample timeline position SampleTime to an MPD timeline position, use the formula MpdTime
= Period@start + (SampleTime - @presentationTimeOffset) / @timescale.

5.2.6. Clock drift is forbidden

Some encoders experience clock drift - they do not produce exactly 1 second worth of output per 1 second of input,
either stretching or compressing the sample timeline with respect to the MPD timeline.

This document adds the following requirement:
e A DASH service SHALL NOT publish content that suffers from clock drift.
If a packager receives input from an encoder at the wrong rate, it must take corrective action. For example, it might:

1. Drop a span of content if input is produced faster than real-time.

2. Insert regular padding content if input is produced slower than real-time. This padding can take different forms:

o Silence or a blank picture.
o Repeating frames.

o Insertion of short-duration periods where the affected representations are not present.

Of course, such after-the-fact corrective actions can disrupt the end-user experience. The optimal solution is to fix the
defective encoder.

5.2.7. Media segments
A media segment is an HTTP-addressable data structure that contains one or more media samples.
Note: Different media segments may be different byte ranges accessed on the same URL.

MPEGCMAF] requires that Media segments contain one or more consecutive media samples, and consecutive
media segments in the same representation contain consecutive media samples.

MPEGDASH] 7.2.1 requires the followings:

e Media segments contains the media samples that exactly match the time span on the sample timeline that is
assigned to the media segment by the MPD, except when using simple addressing in which case a certain
amount of inaccuracy may be present as defined in § 5.3.4.1 Inaccuracy in media segment timing when using
simple addressing.

e The media segment that starts at or overlaps the period start point contains a media sample that starts at or
overlaps the period start point and the media segment that ends at or overlaps the period end point contains a
media sample that ends at or overlaps the period end point.

MPEGCMAF] 7.3.4 and MPEGDASHCMAFPROF ILE] requires the following:

e Aligned media segments in different representations of the same adaptation set contains samples for the same
true time span, even if using simple addressing with inaccurate media segment timing.

5.2.7.1. Media segment duration deviation

When using simple addressing, the samples contained in a media segment may cover a different time span on the
sample timeline than what is indicated by the nominal timing in the MPD timeline. This deviation is defined as the
offset between the edges of the nominal time span (as defined by MPD timeline) and the edges of the true time span
(as defined by [=sample timeline], and is calculated separately for each edge.

Period

Segment Segment Segment | Segment

T T T T T I I T T T

Figure 11 In simple addressing, a media segment may cover a different time span on the sample timeline than what is indicated
by the nominal timing in the MPD timeline. Red boxes indicate samples.

MPEGDASH] 7.2.1 requires: The duration deviation is no more than 50% of the nominal media segment duration
and may be in either direction.

This document also recommends:

e Media segments of a representation SHOULD be equal in duration. Occasional jitter MAY occur (e.g. due to
encoder decisions on GOP size).

Note: [DVB-DASH] defines some relevant constraints in section 4.5. Consider obeying these constraints to be
compatible with [DVB-DASH].

5.2.7.2. Segments must be aligned

Media segments are said to be aligned if the earliest presentation time of all media segments on the sample
timeline is equal in all representations that belong to the same adaptation set.

[MPEGDASHCMAFPROFILE] requires:

e Media segments are aligned.

e When using simple addressing or explicit addressing, the media segments alignment is signaled by
AdaptationSet@segmentAlignment=true inthe MPD. When using indexed addressing, this is signaled by
AdaptationSet@subsegmentAlignment=true inthe MPD.

5.2.8. Period connectivity

The precise definition of Period connectivity can found in [MPEGDASH] 5.3.2.4. However, generally speaking, in
certain circumstances content may be offered such that a representation is technically compatible with the content of
a representation in a previous period. Such representations are period-connected.

Any subset of the representations in a period may be period-connected with their counterparts in a future or past
period. Period connectivity may be chained across any number of periods.

Note: Connectivity is generally achieved by using the same encoder to encode the content of multiple periods
using the same settings. Keep in mind, however, that decryption is also a part of the client media pipeline -itis
not only the codec parameters that are configured by the initialization segment; different decryption parameters
are likely to break connectivity that would otherwise exist.

For signaling the period connectivity between representation of two periods ina MPD, [MPEGDASH] 5.3.2.4
requires:

® Representation@id is equal.
e AdaptationSet@id is equal.

e The adaptation set in the second period has a supplemental property descriptor with:

o @shemeIdUri setto urn:mpeg:dash:period-connectivity:2015.
o @value setto the Period@id of the first period.

e |nitialization segments of period-connected representations to be functionally equivalent (i.e. the initialization
segment from any period-connected representation can be used to initialize playback of any period-connected

representation).

Period 1 Period 2| Period 3
480p video -« 480p video o« | 480p video
1080p video l-’—— 1080p video 4—5—— 1080p video :
I 4K video I
English audio AAC < English audio AAC
English audio MP3 < English audio MP3
- - = English audio AAC 5.1 | - - -
|
|

Figure 12 Representations can be signaled as period-connected, enabling client optimizations. Arrows on diagram indicate
direction of connectivity reference (from future to past), with the implied message being "the client can use the same decoder it
used where the arrow points to".

Note: Not all representations in an adaptation set need to be period-connected. For example, if a new period is
introduced to add a representation that contains a new video quality level, all other representations will likely be
connected but not the one that was added.

Note that [MPEGDASH] allows:

e An MPD may contain unrelated periods between periods that contain period-connected representations.

e The sample timelines of period-connected representations may be mutually discontinuous (e.g. due to encoder
clock wrap-around or skipping some content as a result of editorial decisions).

e As a period may start and/or end in the middle of a media segment, the same media segment may
simultaneously exist in two period-connected representations, with one part of it scheduled for playback during
the first period and the other part during the second period. This is likely to be the case when no sample timeline
discontinuity is introduced by the transition.

Period 1

Segment 1 Segment 2 Segment 3 Segment 4
urn:mpeg:dash:period-connectivity: 2015

Period 2

Segment 6 Segment 7

Figure 13 The same media segment will often exist in two periods at a period-connected transition. On the diagram, this is
segment 4.

This document recommends:

e Media Presentation with connected content cross periods SHOULD be signaled in the MPD as period-
connected. This is expected to help clients ensure seamless playback across period transitions.

This document also recommends:

e Clients SHOULD NOT present a media segment twice when it occurs on both sides of a period transitionina
period-connected representation.

e Clients SHOULD ensure seamless playback of period-connected representations in consecutive periods.

Note: The exact mechanism that ensures seamless playback depends on client capabilities and will be
implementation-specific. Any shared media segment overlapping the period boundary may need to be detected
and deduplicated to avoid presenting it twice.

5.2.8.1. Period continuity:

In addition to period connectivity, [MPEGDASH] 5.3.2.4 defines period continuity, which is a special case of period

connectivity where the two samples on the boundary between the connected representations are consecutive on the
same sample timeline. Continuity implies connectivity.

Note: The above can only be true if the sample boundary exactly matches the period boundary.

For signaling the period continuity, MPEGDASH] 5.3.2.4 requires:

e The same signaling as for period connectivity, except that the value to use for @schemeIduri is

urn:mpeg:dash:period-continuity:2015.
This document requires:

e Media Presentation with continuous content cross periods SHOULD be signaled in the MPD with period
continuity.

e period connectivity SHALL NOT be simultaneously signaled on the same representation for which period
continuity is signaled.

This document requires:

¢ Clients MAY take advantage of any platform-specific optimizations for seamless playback that knowledge of
period continuity enables; beyond that, clients SHALL treat continuity the same as connectivity.

5.2.9. Dynamic MPDs

This section only applies to dynamic MPDs.
Three main factors differentiate them from static MPDs:
1. The segments described in a dynamic MPD may become available over time, i.e. not all segments are
available.

2. Playback of a dynamic MPD is synchronized to a real time clock (with some amount of client-chosen time shift
allowed).

3. A dynamic MPD may change over time, with clients retrieving new snapshots of the MPD when the validity

duration of the previous snapshot expires.

MPEGDASH)] 5.4.1 requires:

e A dynamic MPD conforms to the MPD constraints not only at its moment of initial publishing but through the
entire MPD validity duration, which is a period of MPD@minimumUpdatePeriod starting from the moment the
MPD download is started by a client, unless overridden by in-band validity expiration signaling.

The MPD validity duration starts when the MPD download is initiated by a client, which may be some
time after it is generated/published!

This document requires: DASH clients SHALL support the presentation of dynamic MPDs.

5.2.9.1. Real time clock synchronization

Itis critical to synchronize the clocks of the client with the clock of service when using a dynamic MPD. The time
indicated by the clock does not necessarily need to match some universal standard as long as the two are mutually
synchronized.

The use of UTCTiming is optional inMPEGDASH)].
This document requires:
e A dynamic MPD SHALL include at least one UTCTiming element that defines a clock synchronization
mechanism. If multiple UTCTiming elements are listed, their order determines the order of preference.
e The set of time synchronization mechanisms SHALL be restricted to the following schemes defined in[MPEGD
ASH]:
© urn:mpeg:dash:utc:http-xsdate:2014
© urn:mpeg:dash:utc:http-iso:2014
© urn:mpeg:dash:utc:http-ntp:2014
© urn:mpeg:dash:utc:ntp:2014
© urn:mpeg:dash:utc:http-head:2014

© urn:mpeg:dash:utc:direct:2014

The use of a "default time source" is not allowed. The mechanism of time synchronization must
always be explicitly defined in the MPD by every service.

This document requires:

e Aclient presenting a dynamic MPD SHALL synchronize its local clock according to the UTCTiming elements in
the MPD and SHALL emit a warning or error to application developers when clock synchronization fails, no
UTCTiming elements are defined or none of the referenced clock synchronization mechanisms are supported by
the client.

ISSUE 2 'We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services.

5.2.9.2. Availability

A media segment is available when an HTTP request to acquire the media segment can be started and successfully
performed to completion by a client. During playback of a dynamic MPD, new media segments continuously become
available and stop being available with the passage of time. [MPEGDASH] defines the segment availability times
of a segment as the duration in wall-clock time in which that segment is available.

An availability window is a time span on the MPD timeline that determines which media segments can be
expected to be available. Each representation has its own availability window. Consequently, availability window at
each moment is defined by the union of segment availability times of all available segments at that moment.

A segment start point (referred to as MPD start time of a segment inMPEGDASH]) is the presentation start time
of the segment in MPD timeline.

A segment end point is defined is the presentation end time of the segment in MPD timeline.
['MPEGDASH]] requires:

e A service makes available all media segments that have their end point inside or at the end of the availability
window.

It is the responsibility of the service to ensure that media segments are available to clients when they
are described as available by the MPD. Consider that the criterium for availability is a successful
download by clients, not successful publishing from a packager.

The availability window is calculated as follows:

1. Let nowbe the current wall clock time according to the synchronized clock.

2. Let AvailabilityWindowStart be now - MPD@timeShiftBufferDepth.

o If MPD@timeShiftBufferDepth is not defined, let AvailabilityWindowStart be MPD@availabilityStartTime.

3. Let TotalAvailability TimeOffset be the sum of all @availabilityTimeOffset values that apply to the
representation (those directly on the Representation element and any of its ancestors).

4. The availability window is the time span from AvailabilityWindowStartto now + TotalAvailabilityTimeOffset.

Mot available Availahle Aovailable Available Available Available Mot available

M PDEtimeshitButterDepth TatalAvailability Time Offset

Availahility window

Figure 14 The availability window determines which media segments can be expected to be available, based on where their
segment end point lies.

This document requires:

e Clients MAY at any point attempt to acquire any media segments that the MPD signals as available. Clients
SHALL NOT attempt to acquire media segments that the MPD does not signal as available.

e Clients SHOULD NOT assume that media segments described by the MPD as available are available and
SHOULD implement appropriate retry/fallback behavior to account for timing errors by slow-publishing or
eagerly-unpublishing services.

5.2.9.3. Time shift buffer:

The time shift buffer is a time span on the MPD timeline that defines the set of media segments that a client is
allowed to present at the current moment in time according to the synchronized clock (now).

This is the mechanism by which clients can introduce a time shift (an offset) between real time and the MPD
timeline when presenting dynamic MPDs. The time shift is zero when a client always chooses to play back the media
segment at the end point of the time shift buffer. By playing back media segments from further in the past, a time shift
is introduced.

Note: A time shift of 30 seconds means that the client starts presenting a media segment at the moment when its
position on the MPD timeline reaches a distance of 30 seconds from the end of the time shift buffer.

The following additional factors further constrain the set of media segments that can be presented at the current time
and can force a client to introduce a time shift:
1. §5.2.9.2 Availability - not every media segment in the time shift buffer is guaranteed to be available.

2. §5.2.9.4 Presentation delay - the service may define a delay that forbids the use of a section of the time shift
buffer.

The time shift buffer extends from now - MPD@timeShiftBufferDepth to now. In the absence of
MPD@timeShiftBufferDepth the start of the time shift buffer is MPD@availabilityStartTime.

Fotentially Fotentially Fotentially Fatentially Fotentially

presentable presentable presentable presentable presentable (it el

Mot presentable

i PDg@timeshitButerDepth

“

Figure 15 Media segments overlapping the time shift buffer may potentially be presented by a client, if other constraints do not
forbid it.

This document requires:
e Clients MAY present samples from media segments that overlap (either in full or in part) the time shift buffer,
assuming no other constraints forbid it.

e Clients SHALL NOT present samples from media segments that are entirely outside the time shift buffer
(whether in the past or the future).

e The start of the time shift buffer may be before the start of the first period. Clients SHALL NOT use regions of the
time shift buffer that are not covered by periods.

A dynamic MPD SHALL contain a period that ends at or overlaps the end point of the time shift buffer, except when
reaching the end of live content in which case the last period MAY end before the end of the time shift buffer.

5.2.9.4. Presentation delay:

There is a natural conflict between the availability window and the time shift buffer. It is legal for a client to present
media segments as soon as they overlap the time shift buffer, yet such media segments might not yet be available.

Furthermore, the delay between media segments entering the time shift buffer and becoming available might be
different for different representations that use different media segment durations. This difference may also change
over time if a representation does not use a constant media segment duration.

This document requires:

e Clients SHALL calculate a suitable presentation delay to ensure that the media segments it schedules for
playback are available and that there is sufficient time to download them once they become available. In
essence, the presentation delay decreases the time shift buffer, creating an effective time shift buffer with a
reduced duration.

MPEGDASH] allows:

e Services may define the MPD@suggestedPresentationDelay attribute to provide a suggested presentation
delay.

This document requires:

e Clients SHOULD use MPD@suggestedPresentationDelay when provided, ignoring the calculated value.

Note: As different clients might use different algorithms for calculating the presentation delay, providing
MPD@suggestedPresentationDelay enables services to roughly synchronize the playback start position of clients.

The effective time shift buffer is the time span from the start of the time shift buffer to now - PresentationDelay.

Mot available
Mot presentable Fresentahle Fresentahle Fresentahle Mot presentable
Mot available P tatl P taki P tatl Available Mot available Mot available
Mot presentable e s e 11 Mot presentable Mot presentable Mat presentahle

FresentationD elay

I PDigtimeShift B uife rDepth

Availability window

Time shift buffer

Figure 16 Media segments that overlap the effective time shift buffer are the ones that may be presented at time now. Two
representations with different segment lengths are shown. Diagram assumes @availabiltiyTimeOffset=6.

This document requires:

e Clients SHALL constrain seeking to the effective time shift buffer. Clients SHALL NOT attempt to present media
segments that fall entirely outside the effective time shift buffer.

5.2.9.5. MPD updates:

Dynamic MPDs may change over time. The nature of the change is not restricted unless such a restriction is explicitly
defined.

Some common reasons to make changes in dynamic MPDs:

e Adding new segment references to an existing period.
e Adding new periods.
e Converting unlimited-duration periods to fixed-duration periods by adding Period@duration.

e Removing segment references and/or periods that have fallen out of the time shift buffer.

e Shortening an existing period when changes in content scheduling take place.

e Removing MPD@minimumUpdatePeriod to signal that MPD will no longer be updated.

e Converting the MPD to a static MPD to signal that a live service has become available on-demand as a
recording.

MPEGDASH] 5.4.1 requires the following restrictions for MPD updates:

e MPD@id does not change.

® MPD.Location does not change.

e MPD@availabilityStartTime does not change.

e Period@id does not change.

e Period@start does not change.

® Period@duration does not change except when explicitly allowed by other statements in this document.

e The adaptation sets presentin a period (i.e. the set of AdaptationSet@id values) does not change.

e The representations present in an adaptation set (i.e. the set of Representation@id values) does not change.

e The functional behavior of a representation (identified by a matching Representation@id value) does not
change, neither in terms of metadata-driven behavior (including metadata inherited from adaptation set level)
nor in terms of media segment timing. In particular:

o SegmentTemplate@presentationTimeOffset does not change.

o SegmentBase@presentationTimeOffset does not change.
Additional restrictions on MPD updates are defined by other parts of this document.

This document requires:

e The presence or absence of MPD@minimumUpdatePeriod SHALL be used by a service to signal whether the
MPD might be updated (with presence indicating potential for future updates). The value of this field indicates
the MPD validity duration of the present snapshot of the MPD, starting from the moment its download was
initiated. Absence of the MPD@minimumUpdatePeriod attribute indicates an infinite validity (the MPD will never be
updated). The value 0 indicates that the MPD has no validity after the moment it was retrieved.

e Since clients usually require some time to download and process an MPD update, a service SHOULD NOT
assume perfect update timing.

e In addition to signaling that clients are expected to poll for regular MPD updates, a service MAY publish in-band
events to update the MPD validity duration at moments of its choosing.

This document also requires:

e Clients SHOULD use @id to track period, adaptation set and representation identity across MPD updates.

e Clients SHALL process state changes that occur during the MPD validity duration. For example new media
segments will become available over time if they are referenced by the MPD and old ones become unavailable,
even without an MPD update.

e MPD@minimumUpdatePeriod = @ indicates that the MPD has no validity after the moment it was retrieved. In such
a situation, the client SHALL have to acquire a new MPD whenever it wants to make new media segments
available (no "natural" state changes will occur).

e Clients SHOULD NOT assume that they can get all updates in time (they may already be attempting to buffer
some media segments that were removed by an MPD update).

5.2.9.5.1. Adding content to the MPD

['MPEGDASH]] allows two mechanisms for adding content:

e Additional segment references may be added to the last period.
e Additional periods may be added to the end of the MPD.

Multiple content adding mechanisms may be combined in a single MPD update. An MPD update that adds content
may be combined with an MPD update that removes content.

Period N

Segment Segment
Period N
Segment Segment
I Period N + 1
I Segment I Segment I Segment |

Figure 17 MPD updates can add both segment references and periods (additions highlighted in blue).

This document requires:

e Segment references SHALL NOT be added to any period other than the last period.

e An MPD update MAY combine adding segment references to the last period with adding of new periods.

Note: The duration of the last period cannot change as a result of adding segment references. A live service will
generally use a period with an unlimited duration to continuously add new segment references.

When using simple addressing or explicit addressing, it is possible for a period to define an infinite sequence of
segment references that extends to the end of the period (e.g. using SegmentTemplate@duration or r="-1"). Such
self-extending reference sequences are equivalent to explicitly defined segment reference sequences that extend to
the end of the period and clients MAY obtain new segment references from such sequences even between MPD
updates.

5.2.9.5.2. Removing content from the MPD

Removal of content is only allowed if the content to be removed is not yet available to clients and
guaranteed not to become available until clients receive the MPD update. See § 5.2.9.2 Availability.

To determine the content that may be removed, let EarliestRemovalPoint be availability window end +
MPD@minimumUpdatePeriod.

Note: As each representation has its own availability window, so does each representation have its own
EarliestRemovalPoint.

Period N

Segment Segment Segment

| Period N + 1 |

| Segment | Segment | Segment |

Period N

Segment Segment Segment

Figure 18 MPD updates can remove both segment references and periods (removals highlighted in red).

An MPD update removing content MAY remove any segment references to media segments that start after
EarliestRemovalPoint atthe time the update is published.

Media segments that overlap or end before EarliestRemovalPoint might be considered by clients to be available at
the time the MPD update is processed and therefore SHALL NOT be removed by an MPD update.

The following mechanisms exist removing content:

e The last period MAY change from unlimited duration to fixed duration.
e The duration of the last period MAY be shortened.
e One or more periods MAY be removed entirely from the end of the MPD.

Multiple content removal mechanisms MAY be combined in a single MPD update.

Note: When using indexed addressing or simple addressing, removal of segment references from the end of the
period only requires changing Period@duration. When using explicit addressing, pruning some s elements may
be appropriate to avoid leaving unnecessary segment references.

Clients SHALL NOT fail catastrophically if an MPD update removes already buffered data but MAY incur unexpected
time shift or a visible transition at the point of removal. It is the responsibility of the service to avoid removing data
that may already be in use.

In addition to editorial removal from the end of the MPD, content naturally expires due to the passage of time.
Expired content also needs to be removed:

e Explicitly defined segment references (s elements) SHALL be removed when they have expired (i.e. the media
segment end point has fallen out of the time shift buffer).

o A repeating explicit segment reference (s element with @r != @) SHALL NOT be removed until all
repetitions have expired.

e Periods with their end points before the time shift buffer SHALL be removed.

An MPD update that removes content MAY be combined with an MPD update that adds content.

5.2.9.5.3. End of live content

Live services can reach a point where no more content will be produced - existing content will be played back by
clients and once they reach the end, playback will cease.

This document requires:

e When this occurs, services SHALL define a fixed duration for the last period, remove the
MPD@minimumUpdatePeriod attribute and cease performing MPD updates to signal that no more content will be
added to the MPD.

e The MPD@type MAY be changed to static at this point or later if the service is to be converted to a static MPD
for on-demand viewing.

5.2.9.6. MPD refreshes

To stay informed of the MPD updates, clients need to perform MPD refreshes at appropriate moments to download
the updated MPD snapshots.

This document requires:
e Clients presenting dynamic MPDs SHALL execute the following MPD refresh logic:

1. When an MPD snapshot is downloaded, it is valid for the present moment and at least
MPD@minimumUpdatePeriod after that.

2. Aclient can expect to be able to successfully download any media segments that the MPD defines as available
at any point during the MPD validity duration.

3. The clients MAY refresh the MPD at any point. Typically this will occur because the client wants to obtain more
segment references or make more media segments (for which it might already have references) available by
extending the MPD validity duration.

o This may result in a different MPD snapshot being downloaded, with updated information.

o Orit may be that the MPD has not changed, in which case its validity period is extended to now +
MPD@minimumUpdatePeriod.

Note: There is no requirement that clients poll for updates at MPD@minimumUpdatePeriod interval. They can do so
as often or as rarely as they wish - this attribute simply defines the MPD validity duration.

Services may publish in-band events to explicitly signal MPD validity instead of expecting clients to regularly refresh

on their own initiative. This enables finer control by the service but might not be supported by all clients.
This document requires:

e Services SHALL NOT require clients to support in-band events.

5.2.10. Timing of stand-alone IMSC1 and WebVTT text files

Some services store text adaptation sets in stand-alone IMSC1 or WebVTT files, without segmentation or [ISOBMF
F] encapsulation.

This document requires:

e Timecodes in stand-alone text files SHALL be relative to the period start point.

e @presentationTimeOffset SHALL NOT be present and SHALL be ignored by clients if present.

EXAMPLE 2
IMSC1 subtitles in stored in a stand-alone XML file.

<AdaptationSet mimeType="application/ttml+xml" lang="en-US">
<Role schemeIdUri="urn:mpeg:dash:role:2011" value="subtitle" />
<Representation>
<BaseURL>subtitles_en_us.xml</BaseURL>
</Representation>
</AdaptationSet>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
AdaptationSet element.

5.2.11. Forbidden techniques

Some aspects of MPEGDASH] are not compatible with the interoperable timing model defined in this document. In
the interest of clarity, they are explicitly listed here:

e The @presentationDuration attribute SHALL NOT be used.

5.2.12. Examples

This section is informative.

5.2.12.1. Offer content with imperfectly aligned tracks
It may be that for various content processing workflow reasons, some tracks have a different duration from others.
For example, the audio track might start a fraction of a second before the video track and end some time before the
video track ends.
Video
Audio
Text

Figure 19 Content with different track lengths, before packaging as DASH.

You now have some choices to make in how you package these tracks into a DASH presentation that conforms to
this document. Specifically, there exists the requirement that every representation must cover the entire period with
media samples.

Video

._I“—

Text

Figure 20 Content may be cut (indicated in black) to equalize track lengths.

The simplest option is to define a single period that contains representations resulting from cutting the content to
match the shortest common time span, thereby covering the entire period with samples. Depending on the nature of

the data that is removed, this may or may not be acceptable.

Video

‘ Audio

Text

Figure 21 Content may be padded (indicated in green) to equalize track lengths.

If you wish to preserve track contents in their entirety, the most interoperable option is to add padding samples (e.g.
silence or black frames) to all tracks to ensure that all representations have enough data to cover the entire period
with samples. This may require customization of the encoding process, as the padding must match the codec
configuration of the real content and might be impractical to add after the real content has already been encoded.

Video

Audio ‘

Text

Figure 22 New periods may be started at any change in the set of available tracks.

Another option that preserves track contents is to split the content into multiple periods that each contain a different
set of representations, starting a new period whenever a track starts or ends. This enables you to ensure every

representations covers its period with samples. The upside of this approach is that it can be done easily, requiring
only manipulation of the MPD. The downside is that some clients may be unable to seamlessly play across every

period transition.

Video

]

Text

Figure 23 You may combine the different approaches, cutting in some places (black), padding in others (green) and defining
multiple periods as needed.

You may wish to combine the different approaches, depending on the track, to achieve the optimal resullt.

Some clients are known to fail when transitioning from a period with audio and video to a period with only one of
these components. You should avoid such transitions unless you have exact knowledge of the capabilities of your
clients.

5.2.12.2. Split a period

There exist scenarios where you would wish to split a period in two. Common reasons would be:

e toinsertan ad period in the middle of an existing period.

e parameters of one adaptation set change (e.g. KID or display aspect ratio), requiring a new period to update
signaling.

e some adaptation sets become available or unavailable (e.g. different languages).
This example shows how an existing period can be splitin a way that clients capable of seamless period-connected

playback do not experience interruptions in playback among representations that are present both before and after
the split.

Our starting point is a presentation with a single period that contains an audio representation with short samples and
a video representation with slightly longer samples, so that media segment start points do not always overlap.

Period 1}

S — ———— ———— ———— ———— ———— —

)
Audio representation)

presertationTime0 ffset = PTOS

I
|
|
|
|
Segrment 1 Segmert 2 Segmert 3 Segrment 4 I
I
|
31 31 31 3 31 31 31 31 31 31 31 31 i

I

I

\fidéa_r_epresentatiun'

presentationTimeOffset = PT Oy

Segment 1 Segment 2 Segmernt 3 Segment 4

a0 a0 a0 a0 a0 a0 a0 a0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L —— —— —— —— —— -
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

I
|
|
|
S

Figure 24 Presentation with one period, before splitting. Blue is a segment, yellow is a sample. Duration in arbitrary units is
listed on samples. Segment durations are taken to be the sum of sample durations. presentationTimeOffset may have any
value - it is listed because will be referenced later.

Note: Periods may be split at any point in time as long as both sides of the split remain in conformance to this
document (e.g. each contains at least 1 media segment). Furthermore, period splitting does not require
manipulation of the segments themselves, only manipulation of the MPD.

Let’s split this period at position 220. This split occurs during segment 3 for both representations and during sample
8 and sample 5 of the audio and video representation, respectively.

The mechanism that enables period splitting in the middle of a segment is the following:

* a media segment that overlaps a period boundary exists in both periods.
e representations that are split are signaled in the MPD as period-connected.

e arepresentation that is period-connected with a representation in a previous period [[#timing-connectivity|is
marked with the period connectivity descriptor]].

e clients are expected to deduplicate boundary-overlapping media segments for representations on which period
connectivity is signaled, if necessary for seamless playback (implementation-specific).

e clients are expected to present only the samples that are within the bounds of the current period (may be limited
by client platform capabilities).

After splitting the example presentation, we arrive at the following structure.

Period 1

Audio representation

ntation TimeOffse

Segment 1 Segment 2 Segment 3

31 31 31 31 31 31 31 31 31

———

- _—— _—— e ¥

Video rep_ré;entatio

Period ends at 220

ffset = PTOv

ntation TimeC

Segment 1 Segment 2 Segment 3 !
|
50 50 50 50 50 50 |
Period 2|
start = 220 1
|

T " " " " N T
Audio representation! |

|

|

20ffset = PTOa + 220 f

|

|
Urn:mpe sh:period-connectivity:2015 Segment 3 Segment 4 i
P
31 i 31 a1 31 3 I !

|

Video representationi

Period starts at 220 |
presentationTimeOffset = PTOv + 220 i :
|
i 1

urn:mpeg:dash:period-connectivity: 2015 Segment 3 Segment 4 I
P
50 50 50 50 : |
|
|
|
F)

Figure 25 Presentation with two periods, after splitting. Audio segment 3 and video segment 3 are shared by both periods, with
the connectivity signaling indicating that seamless playback with de-duplicating behavior is expected from clients.

If indexed addressing is used, both periods will reference all segments as both periods will use the same unmodified
index segment. Clients are expected to ignore media segments that fall outside the period bounds.

Simple addressing has significant limitations on alignment at period start, making it unsuitable for
some multi-period scenarios. See § 5.3.4.2 Moving the period start point (simple addressing).

Other periods (e.g. ads) may be inserted between the two periods resulting from the split. This does not affect the
addressing and timing of the two periods.

5.2.12.3. Change the default_KID

In encrypted content, the default_KID of a representation might need to be changed at certain points in time. Often,
the changes are closely synchronized in different representations.

To perform the default_KID change, start a new period on every change, treating each representation as an
independently changing element. With proper signaling, clients can perform this change seamlessly.

I ISSUE 3 'What about period connectivity? #238

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/238

Period 1 Period 2 Period 3
audio KID = 1 audio KID = 2 audio KID = 2
video KID = 1 video KID = 1 video KID =2

KID 1 KID 1 KID 1 KID 1 KID 1 KID 1 KID2 KID2 KID2 KID2 KID2 KID2 KID2

KID 1 KID 1 KID 1 KID 1 KID 2 KID 2

Figure 26 A change in default_KID starts a new period. Orange indicates audio and yellow video representation.

The same pattern can also be applied to other changes in representation configuration.

5.3. Segment addressing modes

This section defines the addressing modes that can be used for referencing media segments, initialization
segments and index segments in interopreable DASH presentations.

Addressing modes not defined in this chapter SHALL NOT be used by DASH services. Clients SHOULD support all
addressing modes defined in this chapter.

All representations in the same adaptation set SHALL use the same addressing mode. Representations in different
adaptation sets MAY use different addressing modes. Period-connected representations SHALL use the same

addressing mode in every period.

You SHOULD choose the addressing mode based on the nature of the content:

< Content generated on the fly
Use explicit addressing.

< Content generated in advance of publishing
Use indexed addressing or explicit addressing.

A service MAY use simple addressing which enables the packager logic to be very simple. This simplicity comes at
a cost of reduced applicability to multi-period scenarios and reduced client compatibility.

Note: Future updates to [MPEGDASH] are expected to eliminate the critical limitations of simple addressing,
enabling a wider range of applicable use cases.

I ISSUE 4 rUpdate to match [MPEGDASH)] 4th edition.

Indexed addressing enables all data associated with a single representation to be stored in a single CMAF track file
from which byte ranges are served to clients to supply media segments, the initialization segment and the index
segment. This gives it some unique advantages:

e A single large file is more efficient to transfer and cache than 100 000 or more small files, reducing
computational and /O overhead.

e CDNs are aware of the nature of byte-range requests and can preemptively read-ahead to fill the cache ahead
of playback.

5.3.1. Indexed addressing

A representation that uses indexed addressing consists of a CMAF track file containing an index segment, an
initialization segment and a sequence of media segments.

Note: This addressing mode is sometimes called "SegmentBase" in other documents.

Clauses in section only apply to representations that use indexed addressing.

Note: [MPEGDASH] makes a distinction between "segment" (HTTP-addressable entity) and "subsegment" (byte
range of an HTTP-addressable entity). This document does not make such a distinction and has no concept of
subsegments. Usage of "segment" here matches the definition of CMAF segment [MPEGCMAF].

MPD

Byte range Byte range
81-1181 1206-3189
i Track file!
I L J A J f
1
i Initialization segment Index segment Media segment 1 Media segment 2 Media segment 3 :
| L e L A L A 1
Byte ran
31198-46598 Byte range
46599-56981 Byte range
56082-89817

Figure 27 Indexed addressing is based on an index segment that references all media segments.

The MPD defines the byte range in the CMAF track file that contains the index segment. The index segment informs
the client of all the media segments that exist, the time spans they cover on the sample timeline and their byte
ranges.

Multiple representations SHALL NOT be stored in the same CMAF track file (i.e. no multiplexed representations are
to be used).

At least one Representation/BaseURL element SHALL be present in the MPD, containing a URL pointing to the
CMAF track file.

The SegmentBase@indexRange attribute SHALL be present in the MPD. The value of this attribute identifies the byte
range of the index segment in the CMAF track file. The value is a byte-range-spec as defined in [RFC7233],
referencing a single range of bytes.

The SegmentBase@timescale attribute SHALL be present and its value SHALL match the value of the timescale
field in the index segment (in the [ISOBMFF] sidx box) and the value of the timescale field in the initialization
segment (in the [['ISOBMFF tkhd box)]]).

The SegmentBase/Initialization@range attribute SHALL identify the byte range of the initialization segment in the
CMAF track file. The value is a byte-range-spec as defined in [RFC7233], referencing a single range of bytes. The
Initialization@sourceURL attribute SHALL NOT be used.

EXAMPLE 3
Below is an example of common usage of indexed addressing.

The example defines a timescale of 48000 units per second, with the period starting at position 8100 (or
0.16875 seconds) on the sample timeline. The client can use the index segment referenced by indexRange to
determine where the media segment containing position 8100 (and all other media segments) can be found. The
byte range of the initialization segment is also provided.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period>
<AdaptationSet>
<Representation>
<BaseURL>showreel_audio_dashinit.mp4</BaseURL>
<SegmentBase timescale="48000" presentationTimeOffset="8100" indexRange="848-999">
<Initialization range="0-847"/>
</SegmentBase>
</Representation>
</AdaptationSet>
</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.3.2. Structure of the index segment

The index segment SHALL consist of a single Segment Index Box (sidx) as defined by [ISOBMFF]. The field layout
is as follows:

aligned(8) class SegmentIndexBox extends FullBox('sidx', version, @) {
unsigned int(32) reference_ID;
unsigned int(32) timescale;

if (version==0) {
unsigned int(32) earliest_presentation_time;
unsigned int(32) first_offset;

}

else {
unsigned int(64) earliest_presentation_time;
unsigned int(64) first_offset;

unsigned int(16) reserved = 0;
unsigned int(16) reference_count;

for (i = 1; i <= reference_count; i++)
{
bit (1) reference_type;
unsigned int(31) referenced_size;
unsigned int(32) subsegment_duration;
bit(1) starts_with_SAP;
unsigned int(3) SAP_type;
unsigned int(28) SAP_delta_time;

The values of the fields are determined as follows:

reference_ID
The track_ID of the [ISOBMFF] track that contains the data of this representation.

timescale
Same as the timescale field of the Media Header Box and same as the SegmentBase@timescale attribute in

the MPD.

earliest_presentation_time
The start timestamp of the first media segment on the sample timeline, in timescale units.

first_offset
Distance from the end of the index segment to the first media segment, in bytes. For example, 0 indicates that

the first media segment immediately follows the index segment.

reference_count
Total number of media segments referenced by the index segment.

reference_type
0

referenced_size
Size of the media segment in bytes. Media segments are assumed to be consecutive, so this is also the
distance to the start of the next media segment.

subsegment_duration
Duration of the media segment in timescale units.

starts_with_SAP
1

SAP_type
Either 1 or 2, depending on the sample structure in the media segment.

SAP_delta_time
0

I ISSUE 5 'We need to clarify how to determine the right value for SAP_type. #235

5.3.2.1. Moving the period start point (indexed addressing)

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural” start point of the representations within.

For representations that use indexed addressing, perform the following adjustments to set a new period start point:

1. Update SegmentBase@presentationTimeOffset to indicate the desired start point on the sample timeline.

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

2. Update Period@duration to match the new duration.

5.3.3. Explicit addressing

A representation that uses explicit addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the exact time span covered by each media segment
described in the MPD.

Note: This addressing mode is sometimes called "SegmentTemplate with SegmentTimeline" in other
documents.

Clauses in section only apply to representations that use explicit addressing.

Initialization segment: init. mpd
Initialization segment: init. mpd Template: $number$.mp4
MFD Template: $time$.mp4d MFD startNumber=300
i went references nt ref
ements
initmp4 initmp4
P |nitialization segment P |nitialization segment
£1100.mp4 300.mpd
Media segment 1 Media segment 1
B5100.mp4 301 .mp4
Media segment 2 T Media segment 2
91230.mp4 302.mpd
— Media segment 3 —» Media segment 3

Figure 28 Explicit addressing uses a segment template that is combined with explicitly defined time spans for each media
segment in order to reference media segments, either by start time or by sequence number.

The MPD SHALL contain a SegmentTemplate/SegmentTimeline element, containing a set of segment references,
which satisfies the requirements defined in this document. The segment references exist as a sequence of S
elements, each of which references one or more media segments with start time s@t and duration s@d timescale
units on the sample timeline. The SegmentTemplate@duration attribute SHALL NOT be present.

To enable concise segment reference definitions, an s element may represent a repeating segment reference that
indicates a number of repeated consecutive media segments with the same duration. The value of s@r SHALL
indicate the number of additional consecutive media segments that exist.

Note: Only additional segment references are counted, so S@r=5 indicates a total of 6 consecutive media
segments with the same duration.

The start time of a media segment is calculated from the start time and duration of the previous media segment if not
specified by s@t. There SHALL NOT be any gaps or overlap between media segments.

The value of s@r is nonnegative, except for the last s element which MAY have a negative value in S@r, indicating
that the repeated segment references continue indefinitely up to a media segment that either ends at or overlaps the
period end point.

Updates to a dynamic MPD MAY add more S elements, remove expired S elements, increment
SegmentTemplate@startNumber, add the s@t attribute to the first s element or increase the value of s@r onthe last s
element but SHALL NOT otherwise modify existing S elements.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments, using
either the $Time$ or $Numbers template variable to unique identify media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1). The s@n attribute SHALL NOT be used - segment numbers form a
continuous sequence starting with SegmentTemplate@startNumber.

EXAMPLE 4
Below is an example of common usage of explicit addressing.

The example defines 225 media segments starting at position 900 on the sample timeline and lasting for a total
of 900.225 seconds. The period ends at 900 seconds, so the last 0.225 seconds of content is clipped (out of
bounds samples may also simply be omitted from the last media segment). The period starts at position 900
which matches the start position of the first media segment found at the relative URL video/900.m4s.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period duration="PT900S">
<AdaptationSet>
<Representation>
<SegmentTemplate timescale="1000" presentationTimeOffset="900"
media="video/$Time$.mas" initialization="video/init.mp4">
<SegmentTimeline>
<S t="900" d="4001" r="224" />
</SegmentTimeline>
</SegmentTemplate>
</Representation>
</AdaptationSet>
</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

EXAMPLE 5
Below is an example of explicit addressing used in a scenario where different media segments have different
durations (e.g. due to encoder limitations).

The example defines a sequence of 11 media segments starting at position 120 on the sample timeline and
lasting for a total of 95520 units at a timescale of 1000 units per second (which results in 95.52 seconds of data).
The period starts at position 810, which is within the first media segment, found at the relative URL
video/120.m4s. The fifth media segment repeats once, resulting in a sixth media segment with the same
duration.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period>
<AdaptationSet>
<Representation>

<SegmentTemplate timescale="1000" presentationTimeOffset="810"

media="video/$Time$.m4s" initialization="video/init.mp4">
<SegmentTimeline>
<S t="120" d="8520"/>
<S d="8640"/>
<S d="8600"/>
<S d="8680"/>
<S d="9360" r="1"/>
<S d="8480"/>
<S d="9080"/>
<S d="6440"/>
<S d="10000"/>
<S d="8360"/>
</SegmentTimeline>
</SegmentTemplate>
</Representation>
</AdaptationSet>
</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.3.3.1. Moving the period start point (explicit addressing):

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a

period at a point after the "natural” start point of the representations within.
For representations that use explicit addressing, perform the following adjustments to set a new period start point:

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point on the sample timeline.

. Update Period@duration to match the new duration.

2
3. Remove any unnecessary segment references.
4

. Ifusing the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

Note: See § 5.2.4 Representations and § 5.2.9.5.2 Removing content from the MPD to understand the constraints
that apply to segment reference removal.

5.3.4. Simple addressing

ISSUE 6 rOnce we have a specific @earliestPresentationTime proposal submitted to MPEG we need to
update this section to match. See #245. This is now done in [MPEGDASH)] 4th edition - need to synchronize this
text.

A representation that uses simple addressing consists of a set of media segments accessed via URLs
constructed using a template defined in the MPD, with the nominal time span covered by each media segment
described in the MPD.

Simple addressing defines the nominal time span of each media segment in the MPD. The true time
span covered by samples within the media segment can be slightly different than the nominal time
span. See § 5.3.4.1 Inaccuracy in media segment timing when using simple addressing.

Note: This addressing mode is sometimes called "SegmentTemplate without SegmentTimeline" in other
documents.

Clauses in section only apply to representations that use simple addressing.

Initialization segment: init. mpd
Initialization segment: init. mpd Template: $Number$.mpd
MFD Template: $Time$.mp4 MFD startNumber=300
prese ntationTimeOffset=81100 presentation Time Cffset=81100
duration=10000 duration=10000
%Inmahzatlon segment %Inmahzahon segment
£1100.mpd 300.mpd
Media segment 1 [®» Media segment 1
91100.mp4 301.mpd
Media segment 2 ————————®» Media segment 2
101100.mpd) 302.mpd :
L————————————» Media segment 3 L——————————» Media segment 3

Figure 29 Simple addressing uses a segment template that is combined with approximate first media segment timing
information and an average media segment duration in order to reference media segments, either by start time or by sequence
number.

The SegmentTemplate@duration attribute SHALL define the nominal duration of a media segment in timescale units.

The set of segment references SHALL consist of the first media segment starting exactly at the period start point and
all other media segments following in a consecutive series of equal time spans of SegmentTemplate@duration
timescale units, ending with a media segment that ends at or overlaps the period end time.

The SegmentTemplate@media attribute SHALL contain the URL template for referencing media segments, using
either the $Time$ or $Numbers template variable to uniquely identify media segments. The
SegmentTemplate@initialization attribute SHALL contain the URL template for referencing initialization segments.

If using $Number$ addressing, the number of the first segment reference is defined by
SegmentTemplate@startNumber (default value 1).

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/245

EXAMPLE 6
Below is an example of common usage of simple addressing.

The example defines a sample timeline with a timescale of 1000 units per second, with the period starting at
position 900. The average duration of a media segment is 4001. Media segment numbering starts at 800, so the
first media segment is found at the relative URL video/800.m4s. The sequence of media segments continues to
the end of the period, which is 900 seconds long, making for a total of 225 defined segment references.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period duration="PT900S">
<AdaptationSet>
<Representation>
<SegmentTemplate timescale="1000" presentationTimeOffset="900"
media="video/$Number$.m4s" initialization="video/init.mp4"
duration="4001" startNumber="800" />
</Representation>
</AdaptationSet>
</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

5.3.4.1. Inaccuracy in media segment timing when using simple addressing

When using simple addressing, the samples contained in a media segment MAY cover a different time span on the
sample timeline than what is indicated by the nominal timing in the MPD, as long as no constraints defined in this
document are violated by this deviation.

Figure 30 Simple addressing relaxes the requirement on media segment contents matching the sample timeline. Red boxes
indicate samples.

The allowed deviation is defined as the maximum offset between the edges of the nominal time span (as defined by
the MPD) and the edges of the true time span (as defined by the contents of the media segment). The deviation is
evaluated separately for each edge.

This allowed deviation does not relax any requirements that do not explicitly define an exception. For
example, periods must still be covered with samples for their entire duration, which constrains the
flexibility allowed for the first and last media segment in a period.

The deviation SHALL be no more than 50% of the nominal media segment duration and MAY be in either direction.

Note: This results in a maximum true duration of 200% (+50% outward extension on both edges) and a minimum
true duration of 1 sample (-50% inward from both edges would result in O duration but empty media segments are
not allowed).

Allowing inaccurate timing is intended to enable reasoning on the sample timeline using average values for media
segment timing. If the addressing data says that a media segment contains 4 seconds of data on average, a client
can predict with reasonable accuracy which samples are found in which media segments, while at the same time the
service is not required to publish per-segment timing data in the MPD. It is expected that the content is packaged
with this contraint in mind (i.e. every segment cannot be inaccurate in the same direction - a shorter segment now
implies a longer segment in the future to make up for it).

EXAMPLE 7
Consider a media segment with a nominal start time of 8 seconds from period start and a nominal duration of 4
seconds, within a period of unlimited duration.

The following are all valid contents for such a media segment:

e samples from 8 to 12 seconds (perfect accuracy)
e samples from 6 to 14 seconds (maximally large segment allowed, 50% increase from both ends)

e samples from 9.9 to 10 seconds (near-minimally small segment; while we allow a 50% decrease from both
ends, potentially resulting in zero duration, every segment must still contain at least one sample)

¢ samples from 6 to 10 seconds (maximal offset toward zero point at both ends)

¢ samples from 10 to 14 seconds (maximal offset away from zero point at both ends)

Near period boundaries, all the constraints of timing and addressing must still be respected! Consider a media
segment with a nominal start time of 0 seconds from period start and a nominal duration of 4 seconds. If such a
media segment contained samples from 1 to 5 seconds (offset of 1 second away from zero point at both ends,
which is within acceptable limits) it would be non-conforming because of the requirement in § 5.2.7 Media
segments that the first media segment contain a media sample that starts at or overlaps the period start point.
This severely limits the usefulness of simple addressing.

5.3.4.2. Moving the period start point (simple addressing)

When splitting periods in two or performing other types of editorial timing adjustments, a service might want to start a
period at a point after the "natural” start point of the representations within.

Simple addressing is challenging to use in such scenarios. You SHOULD convert simple addressing
representations to use explicit addressing before adjusting the period start point or splitting a period. See § 5.3.4.3
Converting simple addressing to explicit addressing.

The rest of this chapter provides instructions for situations where you choose not to convert to explicit addressing.

To move the period start point, for representations that use simple addressing:

e Every simple addressing representation in the period must contain a media segment that starts exactly at the
new period start point.

¢ Media segments starting at the new period start point must contain a sample that starts at or overlaps the new
period start point.

Note: If you are splitting a period, also keep in mind the requirements on period end point sample alignment for
the period that remains before the split point.

Finding a suitable new start point that conforms to the above requirements can be very difficult. If inaccurate timing is
used, it may be altogether impossible. This is a limitation of simple addressing.

Having ensured conformance to the above requirements for the new period start point, perform the following
adjustments:

1. Update SegmentTemplate@presentationTimeOffset to indicate the desired start point on the sample timeline.

2. [fusing the $Number$ template variable, increment SegmentTemplate@startNumber by the number of media
segments removed from the beginning of the representation.

3. Update Period@duration to match the new duration.

5.3.4.3. Converting simple addressing to explicit addressing

It may sometimes be desirable to convert a presentation from simple addressing to explicit addressing. This chapter
provides an algorithm to do this.

Simple addressing allows for inaccuracy in media segment timing. No inaccuracy is allowed by
explicit addressing. The mechanism of conversion described here is only valid when there is no
inaccuracy. If the nominal time spans in original the MPD differ from the true time spans of the media
segments, re-package the content from scratch using explicit addressing instead of converting.

To perform the conversion, execute the following steps:

1. Calculate the number of media segments in the representation as SegmentCount =
Ceil(AsSeconds(Period@duration) / (SegmentTemplate@duration / SegmentTemplate@timescale))

2. Update the MPD.

1. Add a single SegmentTemplate/SegmentTimeline element.

. Add a single SegmentTimeline/S element.

. Set s@t to equal SegmentTemplate@presentationTimeOffset.
. Set s@d to equal SegmentTemplate@duration.

. Remove SegmentTemplate@duration.

o g~ 0N

. Set s@r to SegmentCount - 1.

EXAMPLE 8
Below is an example of a simple addressing representation before conversion.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period duration="PT900S">
<AdaptationSet>
<Representation>
<SegmentTemplate timescale="1000" presentationTimeOffset="900"
media="video/$Number$.m4s" initialization="video/init.mp4"
duration="4001" startNumber="800" />
</Representation>
</AdaptationSet>
</Period>
</MPD>

As part of the conversion, we calculate SegmentCount = Ceil(900 / (4001 / 1000)) = 225.

After conversion, we arrive at the following result.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011">
<Period duration="PT900S">
<AdaptationSet>
<Representation>
<SegmentTemplate timescale="1000" presentationTimeOffset="900"
media="video/$Number$.m4s" initialization="video/init.mp4"
startNumber="800">
<SegmentTimeline>
<S t="900" d="4001" r="224" />
</SegmentTimeline>
</SegmentTemplate>
</Representation>
</AdaptationSet>
</Period>
</MPD>

Parts of the MPD structure that are not relevant for this chapter have been omitted - the above are not fully
functional MPD files.

5.4. Adaptation set contents®

Adaptation sets SHALL contain media segments compatible with a single decoder, although services MAY require
the decoder to be re-initialized when switching to a new representation. See also § 6.4 Bitstream switching.

All representations in the same adaptation set SHALL have the same timescale, both in the MPD and in the
initialization segment tkhd boxes.

ISOBMFF] edit lists SHALL be identical for all representations in an adaptation set.

Note: [DVB-DASH)] defines some relevant constraints in section 4.5. Consider obeying these constraints to be
compatible with [DVB-DASH)].

5.5. Adaptation set types
Each adaptation set SHALL match exactly one category from among the following:

¢ A video adaptation set contains visual information for display to the user. Such an adaptation set is identified
by @mimeType="video/mp4". The values for @codecs SHALL be restricted to values defined in § 11 Media
coding technologies.

¢ An audio adaptation set contains sound information to be rendered to the user. Such an adaptation set is

identified by @mimeType="audio/mp4". The values for @codecs SHALL be restricted to values defined in§ 11
Media coding technologies.

¢ A text adaptation set contains visual overlay information to be rendered as auxiliary or accessibility
information. Such an adaptation set is identified by one of:

o @mimeType="application/mp4" and a @codecs parameter of a text coding technology defined in § 11
Media coding technologies.

o @mimeType="application/ttml+xml" with no @codecs parameter.

* A metadata adaptation set contains information that is not expected to be rendered by a specific media
handler, but is interpreted by the application. Such an adaptation set is identified by
@mimeType="application/mp4" and an appropriate sample entry identified by the @codecs parameter.

¢ A thumbnail adaptation set contains thumbnail images for efficient display during seeking. Such an

adaptation set is identified by @mimeType="1image/jpeg" or @mimeType="1image/png" in combination with an
essential property descriptor with @schemeIdUri="http://dashif.org/guidelines/thumbnail_tile".

ISSUE 7 'What exactly is metadata @codecs supposed to be? https://github.com/Dash-Industry-Forum/DASH-
IF-IOP/issues/290

The adaptation set type SHALL be used by a DASH client to identify the appropriate handler for rendering. Typically,
a DASH client selects at most one adaptation set of each type.

In addition, a DASH client SHOULD use the value of the @codecs parameter to determine whether the underlying
media playback platform can play the media contained within the adaptation set.

See § 11 Media coding technologies for detailed codec-specific constraints.

5.6. Video adaptation set constraints

All representations in the same video adaptation set SHALL be alternative encodings of the same source content,
encoded such that switching between them does not produce visual glitches due to picture size or aspect ratio
differences.

I ISSUE 8 ‘Anillustration here would be very useful.

I ISSUE 9 'https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/284

To avoid visual glitches you must ensure that the sample aspect ratio is set correctly. For reasons of coding
efficiency and due to technical constraints, different representations might use a different picture aspect ratio. Each
representation signals a sample aspect ratio (e.g. inan [MPEGAVC] aspect_ratio_idc) thatis used to scale the
picture so that every representation ends up at the same display aspect ratio. The formula is display aspect ratio
= picture aspect ratio / sample aspect ratio.

Inthe MPD, the display aspect ratio is AdaptationSet@par and the sample aspect ratio is Respresentation@sar.
The picture aspect ratio is not directly present but is derived from Representation@width and

Representation@height.

The encoded picture SHALL only contain the active video area, so that clients can frame the height and width of the
encoded video to the size and shape of their currently selected display area without extraneous padding in the
decoded video, such as "letterbox bars" or "pillarbox bars".

Representations in the same video adaptation set SHALL NOT differ in any of the following parameters:

e Color Primaries
e Transfer Characteristics

e Matrix Coefficients.

If different video adaptation sets differ in any of the above parameters, these parameters SHOULD be signaled in
the MPD on the adaptation set level by a supplemental property descriptor or an essential property descriptor with
@schemeIdUri="urn:mpeg:mpegB:cicp:<Parameter>" as defined in[iso23001-8] and <Parameter> being one of the
following: ColourPrimaries, TransferCharacteristics, or MatrixCoefficients. The @value attribute SHALL be
set as defined in [is023001-8].

ISSUE 10 'Why is the above a SHOULD? [f it matters enough to signal, we should make it SHALL?
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/286

In any video adaptation set, the following SHALL be present:

e AdaptationSet@par (the display aspect ratio)

® Representation@sar (the sample aspect ratio)

e Either Representation@width or AdaptationSet@width (but not both)

e Either Representation@height or AdaptationSet@height (but not both)

e Either Representation@frameRate or AdaptationSet@frameRate (but not both)

Note: @width and @height indicate the number of encoded pixels. @par indicates the final intended display
aspect ratio and @sar is effectively the ratio of aspect ratios (ratio of @width x @height to @par).

EXAMPLE 9
Given a coded picture of 720x576 pixels with an intended display aspect ratio of 16:9, we would have the
following values:

* @width=720

® @height=576

® @par=16:9

® @sar=45:64 (720x576 is 5:4, which gives @sar=5:4/16:9=45:64)

I ISSUE 11 This chapter already includes changes from #274

In any video adaptation set, the following SHOULD NOT be present and SHALL be ignored by clients if present:

® AdaptationSet@minWidth
® AdaptationSet@maxWidth
® AdaptationSet@minHeight
® AdaptationSet@maxHeight
® AdaptationSet@minFrameRate

® AdaptationSet@maxFrameRate
The above min/max values are trivial to determine at runtime, so can be calculated by the client when needed.

@scanType SHOULD NOT be present and if present SHALL have the value progressive. Non-progressive video is
not interoperable.

5.7. Audio adaptation set constraints

AdaptationSet@lang SHALL be present on every audio adaptation set.

@audioSamplingRate SHALL be present either on the adaptation set or representation level (but not both).

The AudioChannelConfiguration element SHALL be present either on the adaptation set or representation level
(but not both). The scheme and value SHALL conform to ChannelConfiguration as defined in [is023001-8].

5.8. Text adaptation set constraints

Text adaptation sets SHOULD be annotated using descriptors defined by [MPEGDASH], specifically Role,
Accessibility, EssentialProperty and SupplementalProperty descriptors.

Guidelines for annotation are provided in § 7 Content annotation and selection and section 7.1.2 of [DVB-DASH].

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/274

5.9. Accessing resources over HTTP

MPEGDASH)] defines the structure of DASH presentations. Combined with an understanding of the [addressing
modes], this enables DASH clients to determine a set of HTTP requests that must be made to acquire the resources
needed for playback of a DASH presentation. This section defines rules for performing the HTTP requests and
signaling the relevant parameters in an interoperable manner.

I ISSUE 12 'https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/333

5.9.1. MPD URL resolution

A service MAY use the MPD/Location element to redirect clients to a different URL to perform MPD refreshes. HTTP
redirection MAY be used when responding to client requests.

A DASH client performing an MPD refresh SHALL determine the MPD URL according to the following algorithm:

1. Ifatleast one MPD/Location elementis present, the value of any MPD/Location element is used as the MPD
URL. Otherwise the original MPD URL is used as the MPD URL.

2. Ifthe HTTP request results in an HTTP redirect using a 3xx response code, the redirected URL replaces the
MPD URL.

The MPD URL as defined by the above algorithm SHALL be used as an implicit base URL for media segment
requests.

Any present BaseURL element SHALL NOT affect MPD location resolution.

5.9.2. Segment URL resolution

A service MAY publish media segments on URLs unrelated to the MPD URL. A service MAY use multiple BaseURL
elements on any level of the MPD to offer content on multiple URLSs (e.g. via multiple CDNs). HTTP redirection MAY
be used when responding to client requests.

For media segment requests, the DASH client SHALL determine the URL according to the following algorithm:

1. lfan absolute media segment URL is present in the MPD, it is used as-is (after template variable substitution,
if appropriate).

2. Ifan absolute BaseURL elementis presentin the MPD, itis used as the base URL.

3. Otherwise the MPD URL is used as the base URL, taking into account any MPD URL updates that occurred
due to MPD refreshes.

4. The base URL is combined with the relative media segment URL.

Note: The client may use any logic to determine which BaseURL to use if multiple are provided.

The same logic SHALL be used for initialization segments and index segments.

ISSUE 13 'What do relative BaseURLs do? Do they just incrementally build up the URL? Or are they ignored?
This algorithm leaves it unclear, only referencing absolute BaseURLs. We should make it explicit.

5.9.3. Conditional MPD downloads

It can often be the case that a live service signals a short MPD validity period to allow for the possibility of terminating
the last period with minimal end-to-end latency. At the same time, generating future segment references might not
require any additional information to be obtained by c7lients. That is, a situation might occur where constant MPD
refreshes are required but the MPD content rarely changes.

Clients using HTTP to perform MPD refreshes SHOULD use conditional GET requests as specified in [RFC7232] to
avoid unnecessary data transfers when the contents of the MPD do not change between refreshes.

5.9.4. Expanding URL template variables

This section clarifies expansion rules for URL template variables such as $Time$ and $Number, defined by [MPEGD
ASH].

The set of string formatting suffixes used SHALL be restricted to %0[width]d.

Note: The string format suffixes are not intended for general-purpose string formatting. Restricting it to only this
single suffix enables the functionality to be implemented without a string formatting library.

5.10. Minimum buffer time signaling

ISSUE 14 'The text here is technically correct but could benefit from being reworded in a simpler and more
understandable way. If anyone finds themselves with the time, an extra pass over this would be helpful.

The MPD contains a pair of values for a bandwidth and buffering description, namely the Minimum Buffer Time
(MBT) expressed by the value of MPD@minBufferTime and bandwidth (BwW) expressed by the value of
Representation@bandwidth. The following holds:

o the value of the minimum buffer time does not provide any instructions to the client on how long to buffer
the media. The value however describes how much buffer a client should have under ideal network conditions.
As such, MBT is not describing the burstiness or jitter in the network, it is describing the burstiness or jitter in the
content encoding. Together with the BW value, it is a property of the content. Using the "leaky bucket" model,
itis the size of the bucket that makes BW true, given the way the content is encoded.

e The minimum buffer time provides information that for each Stream Access Point (and in the case of DASH-IF
therefore each start of the media segment), the property of the stream: If the Representation (starting at any
segment) is delivered over a constant bitrate channel with bitrate equal to value of the BW attribute then each
presentation time PT is available at the client latest at time with a delay of at most PT + MBT.

¢ |nthe absence of any other guidance, the MBT should be set to the maximum GOP size (coded video

sequence) of the content, which quite often is identical **to the maximum media segment duration**. The MBT
may be set to a smaller value than maximum media segment duration, but should not be set to a higher value.

In a simple and straightforward implementation, a DASH client decides downloading the next segment based on the
following status information:

e the currently available buffer in the media pipeline, buffer
e the currently estimated download rate, rate
o the value of the attribute @minBufferTime, MBT

o the set of values of the @bandwidth attribute for each Representation i, BW[i]
The task of the client is to select a suitable Representation i.

The relevant issue is that starting from a SAP on, the DASH client can continue to playout the data. This means that
at the current time it does have buffer data in the buffer. Based on this model the client can download a
Representation i for which BW[i] < rate*buffer/MBT without emptying the buffer.

Note that in this model, some idealizations typically do not hold in practice, such as constant bitrate channel,
progressive download and playout of Segments, no blocking and congestion of other HTTP requests, etc. Therefore,
a DASH client should use these values with care to compensate such practical circumstances; especially variations
in download speed, latency, jitter, scheduling of requests of media components, as well as to address other practical
circumstances.

One example is if the DASH client operates on media segment granularity. As in this case, not only parts of the
media segment (i.e., MBT worth of data) needs to be downloaded, but the entire Segment, and if the MBT is smaller
than the media segment duration, then rather the media segment duration needs to be used instead of the MBT for
the required buffer size and the download scheduling, i.e. download a Representation i for which BW[i] <

rate*buffer/max_segment_duration.

5.11. Large timescales and time values

ECMASCRIPT] is unable to accurately represent numeric values greater than 253 using built-in types. Therefore,
interoperable services cannot use such values.

All timescales are start times used in a DASH presentations SHALL be sufficiently small that no timecode value
exceeding 253 will be encountered, even during the publishing of long-lasting live services.

Note: This may require the use of 64-bit fields, although the values must still be limited to under 253,

5.12. MPD size

No constraints are defined on MPD size, or on the number of elements. However, services SHOULD NOT create
unnecessarily large MPDs.

Note: [DVB-DASH)] defines some relevant constraints in section 4.5. Consider obeying these constraints to be
compatible with [DVB DASH]].

5.13. Representing durations in XML
All units expressed in MPD fields of datatype xs:duration SHALL be treated as fixed size:

e 60S = 1M (minute)
60M = 1H

(]

L]

24H=1D

L]

30D = 1M (month)

L]

12M =1Y

MPD fields having datatype xs:duration SHALL NOT use the year and month units and SHOULD be expressed as
a count of seconds, without using any of the larger units.

6. Commonly used features
This chapter describes some features of DASH presentations in their common implementations.

Not every DASH client will support each of these features. Compatibility of different clients and services can verified
by comparing the feature sets supported by clients and used by services (and may require experimentation and
testing).

6.1. Seamless switching

A key feature of DASH is the ability for clients to seamlessly switch between compatible representations at
predetermined points on the MPD timeline, enabling content from different representations to be interleaved
according to the wishes of the client. This enables adaptive streaming - changing the active quality level in
accordance with dynamically changing network conditions. Most DASH presentations define switching points at 1-10
second intervals.

Note: Decoder reinitialization during representation switches may result in visible or audible artifacts on some
clients.

There are IDR-like SAPs (i.e. SAPs of type 1 or 2) at the start of each media segment. This enables seamless
switching. The presence of such SAPs is be signaled in the MPD by providing a value of 1 or 2, depending on the
sample structure of the media segments, for either AdaptationSet@subsegmentStartswWithSAP (if indexed

addressing is used) or AdaptationSet@segmentStartsWithSAP (if any other addressing mode is used).

I ISSUE 15 'We need to clarify how to determine the right value for startsWithSAP. #235

ISSUE 16 'Add a reference here to help readers understand what are "IDS-like SAPs (i.e. SAPs of type 1 or
2)".

See also § 6.4 Bitstream switching.

6.2. Preview thumbnails for seeking and navigation

Clients may wish to show timecode-associated preview thumbnails as part of the seeking experience. A typical use
case is for enhancing a scrub bar with visual cues. Services that wish to support this SHOULD provide an adaptation
set with thumbnails.

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

The thumbnails are published as a sequence of jpeg/png images containing grids of thumbnails. One grid of
thumbnails is one media segment. To ensure efficent transfer, a thumbnail media segment SHOULD be at least 1
minute in duration.

A thumbnail adaptation set MAY offer multiple representations with different spatial resolutions.

The addressing mode SHALL be restricted to simple addressing with only the $Number$ templating variable.

Note: The constraint on allowed addressing modes exists to limit the effort required to implement this feature in
clients.

Detailed requirements on the thumbnail representations are defined in § 11.5 Thumbnail images.

6.3. Trick mode

Trick modes are used by DASH clients in order to support fast forward, seek, rewind and other operations in which
typically the media, especially video, is displayed in a speed other than the normal playout speed. In order to support
such operations, it is recommended that the content author adds representations at lower frame rates in order to
support faster playout with the same decoding and rendering capabilities.

However, representations targeted for trick modes are typically not be suitable for regular playout. If the content
author wants to explicitly signal that a representation is only suitable for trick mode cases, but not for regular playout,
the service SHOULD be structured as follows:

e add adaptation sets that that only contain trick mode representations

e annotate each adaptation set with an essential property descriptor or supplemental property descriptor with
URL http://dashif.org/guidelines/trickmode and the @value the value of @id attribute of the adaptation set
with which these trick mode representations are associated. The trick mode representations must be time-
aligned with the representations in the referenced adaptation set. The @value may also be a white-space
separated list of @id values. In this case the trick mode adaptation set is associated to all adaptation sets with
the values of the @id.

e signal the playout capabilities with the attribute @maxPlayoutRate for each representation in order to indicate the
accelerated playout that is enabled by the signaled codec profile and level.

¢ [f the representation is encoded without any coding dependency on the elementary stream level, i.e. each
sample is a SAP type 1, then you SHOULD set the Representation@codingDependency attribute to false.

¢ [f multiple trick mode adaptation sets are present for one regular adaptation set, then sufficient signaling should
be provided to differentiate the different trick mode adaptation sets. Different adaptation sets for example may
be provided as thumbnails (low spatial resolution), for fast forward or rewind (no coding dependency with
@codingDependency setto false and/or lower frame rates), longer values for @duration to improve download
frequencies or different @maxPlayoutRate values. Note also that the @bandwidth value should be carefully
documented to support faster than real-time download of Segments.

If an adaptation set in annotated with the essential property descriptor with URI
http://dashif.org/guidelines/trickmode thenthe DASH client SHALL NOT select any of the contained
representations for regular playout.

6.4. Bitstream switching

Bitstream switching if a feature that allows a switched sequence of media segments from different representations in
the same adaptation set to be decoded without resetting the decoder at switch points by ensuring that the resulting
stream of media segments can be successfully decoded without the decoder even being aware of a switch.

An adaptation set that supports bitstream switching is a bitstream switching adaptation set.

The AdaptationSet@bitstreamSwitching attribute SHOULD be set to true on a bitstream switching adaptation set.
Services SHALL NOT require clients to support bitstream switching in order to correctly present a bitstream
switching adaptation set.

The [ISOBMFF] track_id SHALL be equal for all representations in the same bitstream switching adaptation set.

The AdaptationSet@codecs attribute SHALL be present on a bitstream switching adaptation set and indicate the
maximum profile and level of any representation.

The Representation@codecs attribute MAY be present on representations that belong to a bitstream switching
adaptation set. If present, it SHALL indicate the maximum profile and level of any media segment in the

representation.

ISSUE 17 'Allowing Representation@codecs to be absent might make it more difficult to make bitstream-
switching-oblivious clients. If we require Representation@codecs to always be present, client developer life could
be made simpler.

Clients that support bitstream switching SHALL initialize the decoder using the initialization segment of the
representation with the highest Representation@bandwidth in a bitstream switching adaptation set.

Note: A bitstream switching adaptation set fulfills the requirements of [DVB-DASH].

6.5. Switching across adaptation sets

Note: This technology is expected to be available in[MPEGDASH] Amd 4. Once published by MPEG, this
section is expected to be replaced by a reference to the MPEG-DASH standard.

Representations in two or more adaptation sets may provide the same content. In addition, the content may be time-
aligned and may be offered such that seamless switching across representations in different adaptation sets is
possible. Typical examples are the offering of the same content with different codecs, for example H.264/AVC and
H.265/HEVC and the content author wants to provide such information to the receiver in order to seamlessly switch
representations across different adaptation sets. Such switching permission may be used by advanced clients.

A content author may signal such seamless switching property across adaptation sets by providing a supplemental
property descriptor along with an adaptation set with @schemeIduri setto urn:mpeg:dash:adaptation-set-
switching:2016 and the @value is a comma-separated list of adaptation set IDs that may be seamlessly switched to

from this adaptation set.

If the content author signals the ability of adaptation set switching and as @segmentAlignment or
@subsegmentAlignment are set to true for one adaptation set, the (sub)segment alignment shall hold for all
representations in all adaptation sets for which the @id value is included in the @value attribute of the supplemental

property descriptor.

As an example, a content author may signal that seamless switching across an H.264/AVC adaptation set with
AdaptationSet@id="264" and an HEVC adaptation set with AdaptationSet@id="265" is possible by adding a
supplemental property descriptor to the H.264/AVC adaptation set with @schemeIduri setto
urn:mpeg:dash:adaptationset-switching:2016 and the @value="265" and by adding a supplemental property
descriptor to the HEVC adaptation set with @schemeIdUri setto urn:mpeg:dash:adaptationset-switching:2016
and the @value="264".

In addition, if the content author signals the ability of adaptation set switching for:

e any video adaptation set TODO

e any audio adaptation set TODO

I ISSUE 18 'What is the above talking about?

Note: This constraint may result that the switching may only be signaled with one adaptation set, but not with both
as for example one adaptation set signaling may include all spatial resolutions of another one, whereas it is not
the case the other way round.

6.6. XLink

Some XML elements in an MPD may be external to the MPD itself, delay-loaded by clients based on different
triggers. This mechanism is called XLink and it enables client-side MPD composition from different sources. For the
purposes of timing and addressing, it is important to ensure that the duration of each period can be accurately
determined both before and after XLink resolution.

Note: XLink functionality in DASH is defined by [MPEGDASH] and [XLINK]. This document provides a high level
summary of the behavior and defines interoperability requirements.

XLink elements are those in the MPD that carry the x1ink:href attribute. When XLink resolution is triggered, the
client will query the URL referenced by this attribute. What happens next depends on the result of this query:

< Non-empty result containing a valid XML fragment

The entire XLink element is replaced with the query result. A single XLink element MAY be replaced with
multiple elements of the same type.

< Empty result or query failure
The XLink element remains as-is with the XLink attributes removed.

When XLink resolution is triggered depends on the value of the x1ink:actuate attribute. A value of onLoad indicates
resolution at MPD load-time, whereas a value of onRequest indicates resolution on-demand at the time the client
wishes to use the element. The default value is onRequest.

Services SHALL publish MPDs that conform to the requirements in this document even before XLink resolution. This
is necessary because the behavior in case of XLink resolution failure is to retain the element as-is.

EXAMPLE 10
The below MPD example contains an XLink period. The real duration of the XLink period will only become known
once the XLink is resolved by the client and the XLink element replaced with real content.

The first period has an explicit duration defined because the XLink resolver has no knowledge of the MPD and is
unlikely to know the appropriate value to define for the second period’s Period@start (unless this data is
provided in the XLink URL as a parameter).

The explicitly defined duration of the second period will only be used as a fallback if the XLink resolver decides
not to define a period. In this case the existing element in the MPD is preserved.

<MPD xmlns="urn:mpeg:dash:schema:mpd:2011" xmlns:xlink="http://www.w3.0rg/1999/x1ink" type="s
tatic">

<Period duration="PT30S">

</Period>

<Period duration="PTOS" xlink:href="https://example.com/256479/clips/53473/as_period">

</Period>
</MPD>

After XLink resolving, the entire <Period> element will be replaced, except when the XLink result is empty, in
which case the client preserves the existing element (which in this case is a period with zero duration, ignored by
clients).

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

6.7. Update signaling via in-band events

Services MAY signal the MPD validity duration by embedding in-band messages into representations instead of
specifying a fixed validity duration in the MPD. This allows services to trigger MPD refreshes at exactly the desired
time and to avoid needless MPD refreshes.

The rest of this chapter only applies to services and clients that use in-band MPD validity signaling.

Services SHALL define MPD@minimumUpdatePeriod=0 and add anin-band event stream to every audio
representation or, if no audio representations are present, to every video representation. The in-band event stream
MAY also be added to other representations. The in-band event stream SHALL be identical in every representation
where it is present.

The in-band event stream SHALL be signaled on the adaptation set level by an InbandEventStream element with
@scheme_id_uri="urn:mpeg:dash:event:2012" and a @value of 1 or 3, where

e A value of 1 indicates that in-band events only extend the MPD validity duration.

* A value of 3 indicates that in-band events also contain the updated MPD snapshot when updates occur.

Services SHALL update MPD@publishTime to an unique value after every MPD update.

Note: MPD@publishTime is merely a version label. The value is not used in timing calculations.

EXAMPLE 11

Using in-band signaling and MPD@minimumUpdatePeriod=0, each media segment increases the validity period of
the MPD by the duration of the media segment by default. When a validity event arrives, it carries the validity end
timestamp of the MPD, enabling the client to determine when a new MPD refresh is needed.

For a detailed definition of the mechanism and the event message data structures, see [MPEGDASH]. This chapter
is merely a high level summary of the most important aspects relevant to interoperability.

MPD MPD

BpublishTime="2012-11-01T09:06:31.67 BpublishTime="2012-11-01T0%:06:41.4"
<Period Estart=0> <Period Estart=0>

<InbandEventStream <InbandEventsStream

Bscheme id uri="urn:mpeg:dash:event:2012¥ Bscheme_id uri="urn:mpeg:dash:event:2012~
Bvalue="1" Bvalue="1"

i I
</Pariod> %
URL “Period Estart=118s >

<_-'Pe:iod:/\ 7
w
l URL vRe 7 UF/ \U:L

segment segment segment segment segment
ept=105s ept=11ds ept=1155 ept=0s ept=5s
duration=53 » 4 urEticn=ff ration=3is duration=5s duration=5g

‘emsg’
id uri="urn:mpeg:dash:event:Z0L12" scheme id uri="urn:mpeg:dash:event:Z0lz~
value

on_time delta=g
duration=0xFFFF e duration=0xFFFF

id=12345 id=12345

message data="2012-11-01TO%:06:31.67 V message data="Z0Li-11-01T09:06:31.67 7

Figure 31 lllustration of MPD expiration signaling using in-band events.

Services SHALL emitin-band events as [MPEGDASH] emsg boxes to signal the MPD validity duration using the
following logic:

e Lack of anin-band MPD validity event in a media segment indicates that an MPD that was valid at the start of
the media segment remains valid up to the end of the media segment.

e The presence of anin-band MPD validity event in a media segment indicates that the MPD with
MPD@publishTime equal to the event's publish_time field remains valid up to the event start time.

The in-band events used for signaling MPD validity duration SHALL have scheme_id_uri and value matching the
InbandEventStream element. Clients SHALL NOT use in-band events for MPD validity update signaling if these
fields on the events do not match the InbandEventStream element or if the InbandEventStream element is not
presentin the MPD.

In-band events with value=3 SHALL provide an updated MPD in the event’'s mpd field as UTF-8 encoded text without
a byte order mark.

Clients MAY perofrm MPD refreshes or process an event-embedded MPD immediately upon reading the event,
without waiting for the moment signaled by the event timestamp. Services SHALL ensure that an updated MPD is
available and valid starting from the moment a validity event is signaled.

Multiple media segments MAY signal the same validity update event (identified by matching id field on event),
enabling the signal to be delivered several segments in advance of the MPD expiration.

In-band MPD validity events SHALL NOT be signaled in a static MPD but MAY be present in the media segments
referenced by a static MPD, in which case they SHALL be ignored by clients.

Note: The above may happen when a live service is converted to an on-demand service for catchup/recording
purposes.

6.8. Specifying initial position in presentation URL
I ISSUE 19 rThis section could use another pass to make it easier to read.

By default, a client would want to start playback from the start of the presentation (if MPD@type="static") or from near
the live edge (if MPD@type="dynamic"). However, in some situations it may be desirable to instruct clients to start

playback from a specific position. In live services, where content has a fixed mapping to real time, this means an
initial time-shift is applied.

The interoperable mechanism for this is to add an MPD anchor to the presentation URL. Details of this feature are
defined in [MPEGDASH)], with this chapter offering a summary of the feature and constraining its use to
interoperable cases.

Aninitial position MAY be signalled to the DASH client by including an MPD anchor in the presentation URL. If an
anchor is used, it SHALL be specified with one of the following sets of parameters:

e the t parameter

e both the period and t parameter

The t parameter indicates offset from period start or a moment in real-time, with period referencing a Period@id
(defaulting to the first period).

The value of period@id must be URL-encoded.

The time indicated using the t parameter SHALL be a single npttime value as specified in [media-frags]. Thisis a
narrower definition than accepted by [MPEGDASH].

EXAMPLE 12
To start from the beginning of the first period the following would be added to the end of the MPD URL provided
to the DASH client: #t=0

To start with a fixed offset from the start of a specific period, in this case 50 minutes from the beginning of the
period with ID program_part_2, use the following syntax: #period=program_part_2&t=50:00

When accessing a live service, you can instruct the client to use an initial time-shift so that content from a specific
moment is played back by providing a POSIX timestamp with the t parameter. For example, starting playback
from Wed, 08 Jun 2016 17:29:06 GMT would be expressed as #t=posix:1465406946. Starting playback from the
live edge can be signaled as #t=posix:now.

When referencing a moment in real time using t=posix, the period parameter SHALL NOT be used.

I ISSUE 20 'How do leap seconds tie into this? See #161

7. Content annotation and selection

MPEGDASH] enables a service to annotate adaptation sets to enable clients to make an informed decision on
which adaptation set to select for presentation from among the alternatives offered for each adaptation set type. The
selection is based on client capabilities, client preferences, user preferences and possibly also interactive choices
presented to the user. Typically, the signalling and selection is independent of the codec in use.

This chapter defines requirements and recommendations for annotating adaptation sets with interoperable
descriptive information.

A service may offer multiple adaptation sets of the same type to provide the same content in different encodings or
different source formats (e.g. one adaptation set encoded from a standard dynamic range master and another
encoded from a high dynamic range video master). Alternatively, adaptation sets may describe different content (e.g.
different languages or different camera views).

Note: While the typical situation is that a client selects one adaptation set per adaptation set type, there may be
cases where multiple adaptation sets of the same type are chosen for playback (e.g. § 6.5 Switching across

adaptation sets).

Proper annotation of adaptation sets in MPDs is essential in order to enable interoperable client implementations.

7.1. Annotations for content selection

MPEGDASH] provides many options for annotating adaptation sets. This document defines a restricted subset
considered interoperable by DASH-IF members.

The table below lists the permitted annotations for each adaptation set type. It is expected that interoperable DASH
clients recognize the descriptors, elements, and attributes as documented in this chapter.

Content selection annotations SHALL be defined by a service in sufficient detail to differentiate every adaptation set
from others of the same type. A service SHALL limit content selection annotations to those defined in this chapter.

Many of these annotations are defined by [MPEGDASH)]. Other organizations may define additional descriptors or
elements. Some are defined by IOP.

Note: Supplemental property descriptors are intended for presentation optimization and are intentionally not
listed as annotations to be used for content selection.

Attribute or
element

Use

Usage requirements

@profiles

@group

@selectionPriority

ContentProtection

EssentialProperty

Viewpoint

Label

oD
default=unique
(see

MPEGDASH])

oD
default=1

If not present, it is inherited from the MPD or period. This may be
used for example to signal extensions for new media profiles in
the MPD.

The attribute MAY be used. If present, it SHALL be greater than 0.

The value SHALL be different for different adaptation set types
and MAY be different for adaptation sets of the same type.

This attribute enables a service to define logical groupings of
adaptation sets. A client SHALL select either zero or one

adaptation sets from each group.

This attribute SHOULD be used to expresses the preferences of
the service on selecting adaptation sets for which the DASH client
does make a decision otherwise.

Examples include two video codecs providing the same content,
but one of the two provides higher compression efficiency and is
therefore preferred.

If this element is present, then the content is protected. If not
present, no content protection is applied.

See § 12 Content protection and security

Defines an annotation that is considered essential for processing
the adaptation set. See also essential property descriptor.

Clients SHALL NOT select adaptation sets that are annotated
with any instances of this element that are not understood by the
client.

The following schemes are expected to be recognized by a client
independent of the adaptation set type:

e http://dashif.org/guidelines/trickmode (see § 6.3 Trick
mode)

Indicates that adaptation set differentiates by a different viewpoint
or combination of viewpoints.

If present then all adaptation sets of the same type SHALL carry
this descriptor with the same @schemeIduri and different @value.

Provides a textual description of the content. This element
SHOULD be used if content author expects a client to support a
Ul for selection.

If present then all adaptation sets of the same type SHALL carry
this element with different values.

This element SHALL NOT be used as the sole differentiating
element, as scenarios with no user interaction must still lead to
umanbiguous selection.

Figure 32 Content selection annotations for any adaptation set type.

The following annotations are specific to an adaptation set type.

I ISSUE 21 'https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/274

Attribute or

Use Usage requirements specific to video adaptation sets
element

Defines the codec that is necessary to present one or more representations
in an adaptation set.

This attribute can be present on either the adaptation set level (as a single
value) or the representation level (in which case multiple values might be
present).

@codecs 1..N

See § 11 Media coding technologies for a description of interoperable

codecs.

@par M The display aspect ratio at which content is intended to be displayed.

This attribute should be present to express the maximum width in samples
after decoder sample cropping of any representation contained in the

adaptation set.
@maxWidth O

The value should be the maximum horizontal sample count of any SPS in the
contained bitstream.

This attribute should be present to express the maximum height in pixel of any
representation contained in the adaptation set.

@maxHeight (0] . . .
The value should be the maximum horizontal sample count of any SPS in the

contained bitstream.

This attribute should be present to express the maximum frame rate, i.e. the
maximum value of any entry in the decoder configuration record of the
signaled frame rate, if constant frame rate is provided. contained in the

adaptation set.

@maxFrameRate (0]

Defines an annotation that is considered essential for processing the
adaptation set. See also essential property descriptor.

Clients SHALL NOT select adaptation sets that are annotated with any
instances of this element that are not understood by the client.

EssentialProperty 0..N The following schemes are expected to be recognized by a client for video
adaptation sets:

® urn:mpeg:mpegB:cicp:<Parameter> as defined in[is023001-8] and
<Parameter> being one of the following: ColourPrimaries,

TransferCharacteristics, or MatrixCoefficients

Defines the type of accessibility-relevant content present in the adaptation
set.

The set of descriptors SHALL be restricted to the following:

¢ The "Role" scheme as defined by [MPEGDASH], with
@schemeIdUri="urn:mpeg:dash:role:2011". A clientis expected to
recognize the following values when this scheme is used in the
Accessibility 0..N Accessibility descriptor:

o sign
o caption

e The CEA-608 scheme with @schemeIdUri="urn:scte:dash:cc:cea-
608:2015" (see § 11.8 CEA-608/708 Digital Television (DTV) Closed

Captioning)

Defines the role of the content in the adaptation set.

Attribute or

Use
element

Usaget dgierenmnts Spactifib¢oedtioteddaptatiBolsétsheme as defined
by [MPEGDASH)] with @schemeIdUri="urn:mpeg:dash:role:2011" MAY be

Role 0..N

Attribute or element

used for differentiation. A client is expected to recognize the following values
when this scheme is used in the Role descriptor:

L]

L]

L]

caption
subtitle

main
alternate
supplementary
sign

emergency

Clients SHALL consider there to be an implicit Role descriptor with the "Role"
scheme and the value main if no explicitly defined Role descriptor with the
"Role" scheme is present.

Figure 33 Annotations for video adaptation sets.

Use

Usage requirements specific to audio adaptation sets

@codecs

@lang

@audioSamplingRate

AudioChannelConfiguration

EssentialProperty

1..N

Defines the codec that is necessary to present one or more
representations in an adaptation set.

This attribute can be present on either the adaptation set level (as a
single value) or the representation level (in which case multiple values
might be present).

See § 11 Media coding technologies for a description of
interoperable codecs.

The language of the audio stream.
The audio sampling rate.

specifies information about the audio channel configuration. The
following schemes are expected to be recognized by a client:

® urn:mpeg:dash:23003:3:audio_channel_configuration:2011

as defined inMPEGDASH].
® urn:mpeg:mpegB:cicp:ChannelConfiguration as defined in

is023001-8].

® tag:dolby.com,2014:dash:audio_channel_configuration:2011
as defined in the DASH-IF identifier registry

Defines an annotation that is considered essential for processing the
adaptation set. See also essential property descriptor.

Clients SHALL NOT select adaptation sets that are annotated with
any instances of this element that are not understood by the client.

The following schemes are expected to be recognized by a client for
audio adaptation sets:

® urn:mpeg:dash:audio-receiver-mix:2014 as defined in

MPEGDASH

Defines the type of accessibility-relevant content present in the
adaptation set.

The set of descriptors SHALL be restricted to the "Role" scheme as
defined by [MPEGDASH], with

https://dashif.org/identifiers/audio_source_metadata/

chemeIdUri="urn:mpeg:dash:role;:2011". A clientis ected to
@Jssagel re ulrementspsﬁemﬁc A0S adaptahon 36t
recognize the following values when this scheme is used in the

® enhanced-audio-intelligibility

The set of descriptors SHALL be restricted to the "Role" scheme as
defined by [MPEGDASH] with
@schemeIdUri="urn:mpeg:dash:role:2011" MAY be used for
differentiation. A client is expected to recognize the following values
when this scheme is used in the Role descriptor:

essibilit N
A'ifrlﬁu%e or e¥ement PJse
Accessibility descriptor:
® description
® main
® alternate
Role 0..N ® supplementary

® commentary
® dub
® emergency
Clients SHALL consider there to be an implicit Role descriptor with

the "Role" scheme and the value main if no explicitly defined Role
descriptor with the "Role" scheme is present.

Figure 34 Annotations for audio adaptation sets.

Attribute or

Use Usage requirements specific to text adaptation sets
element

Defines the codec that is necessary to present one or more representations in an
adaptation set.

This attribute can be present on either the adaptation set level (as a single value)
or the representation level (in which case multiple values might be present).

@codecs 0..N .
The attribute SHALL be present, except when IOP does not define a @codecs

value for the used text codec and encapsulation mode combination, in which case
it SHALL be omitted.

See § 11 Media coding technologies for a description of interoperable codecs.

@lang M The text language.
Defines the type of accessibility-relevant content present in the adaptation set.

The set of descriptors SHALL be restricted to the "Role" scheme as defined by
MPEGDASH], with @schemeIdUri="urn:mpeg:dash:role:2011". A clientis
expected to recognize the following values when this scheme is used in the

Accessibility 0..N .]
Accessibility descriptor:

® sign

® caption

Defines the role of the content in the adaptation set.

The set of descriptors SHALL be restricted to the "Role" scheme as defined by
MPEGDASH] with @schemeIdUri="urn:mpeg:dash:role:2011" MAY be used for
differentiation. A client is expected to recognize the following values when this
scheme is used in the Role descriptor:

® main

® alternate

® subtitle

Gele 0..N ® supplementary

® commentary

® dub

® description

® emergency
Clients SHALL consider there to be an implicit Role descriptor with the "Role"

scheme and the value main if no explicitly defined Role descriptor with the "Role"
scheme is present.

Figure 35 Annotations for text adaptation sets.

7.2. Content model

In order to support the content author in providing content in a consistent manner, this chapter provides a conceptual
content model for DASH content in one period of an MPD. The content may be described by an asset identifier as a
whole and may contain different adaptation set types.

Content Asset Description

Media Type Multiple Media

Media Type Video Media Type Audio Media Type Subtitle JAepl o Types

Application-based
Selection

Media Type Content Media Type Content
Alternative 1 Alternative 2

Automated

Target Version 1 Target Version 2 Target Version 3
(Adaptation Set) (Adaptation Set) (Adaptation Set)

System-based
Selection

Dynamic
Switching

Figure 36 Model for content selection.

Within each adaptation set type, the content author may want to offer alternative content that is time-aligned but
where each alternative represents different content (e.g. multiple camera angles). Automatic selection of the
alternative content is not expected to be done by the DASH client as the client would not have sufficient information
to make such decisions. However, the selection is expected to be done by communication with an application or the
user, typically using a user interface appropriate for selection.

In the absence of user indication to select from among the alternatives, the DASH client still needs to select content
to be presented. A DASH service must therefore signal the preferred default content. The preferred content is
referred to as main content, whereas any content that is not main content is referred to as alternative content.
There may be multiple alternatives which may need to be distinguished. See § 7.2.1 Signaling alternative content.

Furthermore, it may be that content of different [[#adaptation-set-types|adaptation set types] is linked by the content
author, to express that two content of different adaptation set type are preferably played together. We define
associated content for this purpose. As an example, there may be a main commentator associated with the main
camera view, but for a different camera view, a different associated commentary is provided. See § 7.2.2 Signaling
associated content.

In addition to semantical content level differentiation, each alternative content may be provided in different variants,
based on content preparation properties (downmix, subsampling, translation, suitable for trick mode, etc.), client
preferences (decoding or rendering preferences, e.g. codec), client capabilities (DASH profile support, decoding
capabilities, rendering capabilities) or user preferences (accessibility, language, etc.). Both main content and
alternative content in all their variants are differentiated in the MPD as defined in § 7.1 Annotations for content
selection.

7.2.1. Signaling alternative content:

If a period contains alternative content for one adaptation set type , then the alternatives SHALL be differentiated
according to § 7.1 Annotations for content selection and one of the alternatives SHALL be provided as main content.

Main content is signaled by using the Role descriptor with scheme urn:mpeg:dash:role:2011 and value set to main.
Alternative content is signaled by using the Role descriptor with scheme urn:mpeg:dash:role:2011 and value set to
alternative.

7.2.2. Signaling associated content:

A Viewpoint descriptor with the same @schemeIduri and @value SHALL be used by services to signal associated
content.

Clients SHALL use identical viewpoint descriptors for determining associated content even if they do not
understand the @schemeIduri.

7.3. Client processing reference models

The following client model serves two purposes:
¢ Inthe absence of other information, the following client model may be implemented in a DASH client for the
purpose of selection of adaptation set for playout
e A content author may use the model to verify that the annotation is properly done in order to get the desired
client behaviour.
In the model it is assumed that the client can get sufficient information on at least the following properties:
e Foreach codec in the @codecs string, the DASH client can get information if the media playback platform can
decode the codec as described in the string. The answer should be yes or no.

e For each DRM system in the ContentProtection element string, the DASH client can get information if the
media playback platform can handle this content protection scheme as described in the string. The answer
should be yes or no.

¢ the DASH client can get information on the media playback platform and rendering capabilities in terms of of

o the maximum spatial resolution for video that can be handled
o the maximum frame rate for video that can be handled
o the audio channel configuration of the audio system
o the audio sampling rate of the audio system
e the preferred language of the system
e Accessibility settings for captions, subtitles, audio description, enhanced audio intelligibility,

e Potentially preferences on media playback and rendering of the platform

Note: If any of these functionalities are not fulfilled, then the client may still be functional, but it may not result in the
full experience as provided by the content author. As an example, if the DASH client cannot determine the
preferred language, it may just use the selection priority for language selection.

The DASH client uses the MPD and finds the period that it likes to join, typically the first one for On-Demand content
and the one at the live edge for live content. In order to select the media to be played, the DASH client assumes that
the content is offered according to the content model above.

1. The DASH client looks for main content, i.e. any adaptation set with annotation

Role@schemeIdUri="urn:mpeg:dash:role:2011" and Role@value="alternative" is excluded initially for
selection. Note that in this model it is assumed that immediate startup is desired. If the DASH client wants to go
over the alternatives upfront before starting the service, then the sequence is slightly different, but still follows the
remaining principles.

2. DASH Client checks each adaptation set for the supported capabilities of the platform. If any of the capabilities
are not supported, then the adaptation set is excluded from the selection process.
o Codec support
o DRM support
o Rendering capabilities

3. The DASH client checks if it supports for CEA-608 rendering as defined in clause § 11.8 CEA-608/708 Digital
Television (DTV) Closed Captioning. If not supported, any accessibility descriptor with
@schemeIdUri="urn:scte:dash:cc:cea-608:2015" is removed. Note that the adaptation set is maintained as it
may used for regular video decoding.

4. DASH Client checks is there are any specific settings for accessibility in the user preferences
o [f captions are requested by the system, the DASH client extracts

= all video adaptation sets that have an Accessibility descriptor assigned with either the
@schemeIdUri="urn:mpeg:dash:role:2011" and @value="caption" or
@schemeIdUri="urn:scte:dash:cc:cea-608:2015" (burned-in captions and SElbased), as well as

= all text adaptation sets that have an Accessibility descriptor assigned with either the
@schemeIdUri="urn:mpeg:dash:role:2011" and @value="caption"

= and makes those available for adaptation sets that can be selected by the DASH client for caption
support.

= [f multiple text adaptation sets remain, the DASH client removes all adaptation sets from the selection
that are not in the preferred language, if language settings are provided in the system. If no language
settings in the system are provided, or none of the adaptation sets meets the preferred languages,

none of the adaptation sets are removed from the selection. Any adaptation sets that do not contain
language annotation are removed, if any of the remaining adaptation sets provides proper language
settings.

= [f still multiple text adaptation sets remain, then the ones with the highest value of @selectionPriority
are chosen.

= [f still multiple text adaptation sets remain, then the DASH client makes a random choice on which
caption to enable.

else if no captions are requested
= the Accessibility element signaling captions may be removed from the adaptation set before
continuing the selection.
If sign language is requested
= all video adaptation sets that have an Accessibility descriptor assigned with

@schemeIdUri="urn:mpeg:dash:role:2011" and @value="sign" are made available for sign
language support.

else if no sign language is requested

= the adaptation set signaling sign language with the Accessibility element may be removed from the
adaptation set before continuing the selection

If audio descriptions are requested

= all video adaptation sets that have an Accessibility descriptor assigned with

@schemeIdUri="urn:mpeg:dash:role:2011" and @value="description" are made available for audio
description support.

else if no audio descriptions are requested

= the adaptation set signaling audio descriptions with the Accessibility element may be removed from
the adaptation set before continuing the selection.

If enhanced audio intelligibility is requested

= all audio adaptation sets that have an Accessibility descriptor assigned with

@schemeIdUri="urn:mpeg:dash:role:2011" and @value="enhanced-audio-intelligibility" are
made available for enhanced audio intelligibility support.

else if no enhanced audio intelligibility is requested

= the Accessibility element may be removed from the adaptation set before continuing the selection.

5. Ifvideo rendering is enabled, based on the remaining video adaptation sets the client selects one as follows:

o

Any adaptation set for which an essential property descriptor is present for which the scheme or value is not
understood by the DASH client, is excluded from the selection

Any adaptation set for which an essential property descriptor is present for which the scheme is
http://dashif.org/guidelines/trickmode, is excluded from the initial selection

If still multiple video adaptation sets remain, then the ones with the highest value of @selectionPriority is
chosen.

If still multiple video adaptation sets remain, then the DASH client makes a choice for itself, possibly on a
random basis.

Note that an adaptation set selection may include multiple adaptation sets, if adaptation set switching is
signaled. However, the selection is done for only one adaptation set.

6. If audio rendering is enabled, based on the remaining audio adaptation sets the client selects one as follows:

o

Any adaptation set for which an essential property descriptor is present for which the scheme or value is not
understood by the DASH client, is excluded from the selection

if multiple audio adaptation sets remain, the DASH client removes all adaptation sets from the selection
that are not in the preferred language, if language settings are provided in the system. If no language
settings in the system are provided, or none of the adaptation sets meets the preferred languages, none of
the adaptation sets are removed from the selection. Any adaptation set that does not contain language
annotation are removed, if any of the remaining adaptation sets provides proper language settings

If still multiple audio adaptation sets remain, then the ones with the highest value of @selectionPriority
are chosen

If still multiple audio adaptation sets remain, then the DASH client makes a choice for itself, possibly on a
random basis

o Note that an adaptation set may include multiple adaptation sets, if adaptation set switching or receiver mix
is signaled. However, the selection is done for only one adaptation set.

7. [ftext rendering is enabled, based on the text adaptation sets the client selects one as follows:

o Any adaptation set for which an essential property descriptor is present for which the scheme or value is not
understood by the DASH client, is excluded from the selection

o If multiple text adaptation sets remain, the DASH client removes all adaptation sets from the selection that
are not in the preferred language, if language settings are provided in the system. If no language settings in
the system are provided, or none of the adaptation sets meets the preferred languages, none of the
adaptation sets are removed from the selection. Any adaptation set that does not contain language
annotation are removed, if any of the remaining adaptation sets provides proper language settings.

o [f still multiple text adaptation sets remain, then the ones with the highest value of @selectionPriority are
chosen.

o [f still multiple text adaptation sets remain, then the DASH client makes a choice for itself, possibly on a
random basis.

8. Ifthe DASH client has the ability to possibly switch to alternative content, then alternative content may be
selected either through the Label function or the vViewpoint functionality. This selection may be done
dynamically during playout and the DASH client is expected to switch to the alternative content. Once alll
alternative content is selected, the procedures following from step 2 onwards apply.

9. At period boundary a DASH client initially looks for period continuity or connectivity, i.e. does the period include
an adaptation set that is a continuation of the existing one. If not present it will go back to step 1 and execute the
decision logic.

8. On-demand services
An on-demand service is one that is published with a static MPD (MPD@type="static").

On-demand services have an infinite availability window and have no fixed mapping to real time - clients may present
any part at any time and may use trick mode support to alter the playback rate.

Note: An on-demand service may be created by transforming what was previously a live service into an on-
demand service for viewing as a catch-up presentation or a recording. See § 9.10 Converting a live service to an
on-demand service.

On-demand services MAY use any addressing mode or even a combination of multiple addressing modes.

MPD elements or attributes only relevant for dynamic MPDs SHALL NOT be present in MPDs of on-demand
services. Clients SHALL ignore any such elements or attributes if present.

8.1. Surviving transforming boxes and other adaptation middleboxes

A number of video transcoding proxies (aka "middleboxes") are deployed on the Internet that may silently transcode
DASH presentations. Specifically, a middlebox may see a video/mp4 HTTP response, transcode that video into a
different format (perhaps using a lower bitrate or a different codec), then forward the transcoded video to the DASH
client. This will break byte range based operations, as byte ranges from the original video are not valid in the
transcoded video.

If such a threat is encountered, the following options may prevent proxies from transcoding DASH presentations:

e Serve DASH presentations using an authenticated transport that prevents interception (HTTPS).
e Serve DASH presentations using encryption that prevents tampering.

e Serve DASH presentations with the Cache-Control: no-transform header.
I ISSUE 22 'insert reference to encryption.
In all cases the operational impacts on caching and implementations should be considered when using any of the

above technologies. The same methods may also need to be applied to prevent middleboxes manipulating the
MPD.

9. Live services

A live service is one that is published with a dynamic MPD (MPD@type="dynamic").

Live services have a strict mapping between the MPD timeline and real time and are often available only for a limited
time. The MPD of a live service may change over time, for example as more content is appended and expired
content is removed. Clients are forced into a timed schedule for the playout, such that they follow the schedule as
desired by the content author (with some amount of client-controlled time-shift allowed).

A live service has a live edge, which is the most recent moment on the MPD timeline for which the MPD guarantees
that media segments are available for all representations. See § 9.7 Determining the live edge.

Live services MAY use either explicit addressing or simple addressing or a combination of the two. Indexed
addressing is not meaningful in a live service context.

Note: In previous versions of IOP a distinction was made between "simple live" and "main live" services. The
latter simply refers to live services that signal MPD updates using in-band events.

There are multiple different types of live services:

Scheduled playback of prepared content
The content is prepared in advance but playback is scheduled for a specific time spanin real time.
MPD-controlled live service
The content is generated on the fly and the MPD receives constant updates to reflect the latest state of the
service offering. The DASH client behavior is driven solely by the MPD contents, which it regularly refreshes.
MPD- and segment-controlled live service
The content is generated on the fly and clients are kept informed of MPD validity by in-band events in the media
segments. MPD downloads are only initiated when the need for updates is detected. Services can signal the
need for updates on short notice.

For initial access to the service and joining the service, an MPD is required. MPDs may be accessed at join time or
may have been provided earlier, for example along with an Electronic Service Guide. An MPD anchor MAY be used
when referencing the MPD to specify an initial time-shift that clients are expected to apply.

Note: Support for MPD anchors is an optional client feature - a service should consider clients that lack an
implementation.

The initial MPD or join MPD is accessed and processed by the client and, having an accurate clock that is
synchronized with the server, the client can analyze the MPD and extract suitable information in order to initiate
playback of the service. This includes, but is not limited to:

e |dentifying the currently active periods in the service and the period that contains the live edge.

e Selecting the suitable media components by selecting one or multiple adaptation sets. Within each adaptation
set selecting an appropriate representation and identifying the live edge segment in each representation. The
client then issues requests for the media segments.

The MPD may be updated on the server based on certain rules and clients consuming the service are expected to
update MPDs based on certain triggers. The triggers may be provided by the MPD itself or by information included
in media segments. See § 5.2.9.5 MPD updates and § 6.7 Update signaling via in-band events.

9.1. Selecting the time shift buffer size

Recommended configuration for time shift buffer size:

If playback should only occur near the live edge, without significant time shift possibility.
MPD@timeShiftBufferDepth SHOULD be short but with a lower limit of 4 times media segment duration or 6
seconds (whichever is largest). This gives the client some opportunity to time-shift for buffering purposes, to
overcome difficult network conditions.

If playback is not limited to near-live-edge.

MPD@timeShiftBufferDepth MAY have an arbitrarily large value, including a value greater than the total duration
of periods in the presentation.

9.2. Selecting the suggested presentation delay’

Recommended configuration for presentation delay:

If the service wishes to explicitly synchronize playback of different clients.

MPD@suggestedPresentationDelay SHOULD be set to the desired presentation delay but with a lower limit of 4
seconds or 2-4 times the media segment duration (whichever is largest).

If the service does not wish to explicitly synchronize playback of different clients.
Omit MPD@suggestedPresentationDelay and let each client determine the optimal presentation delay based on
its own heuristics (which may lead different clients to choosing a different presentation delay).

The limitations imposed by the following factors SHOULD be considered when selecting the value for the

presentation delay:

e The desired end-to-end latency.
® The typical amount of buffering that must be performed by clients.

e The minimum buffer time.

e The time shift buffer size.

9.3. Selecting the media segment duration

The media segment duration SHOULD be between 1 and 10 seconds. The duration influences the end-to-end
latency but also the switching and random access granularity as in DASH-264/AVC each media segment starts with
a stream access point which can also be used as a switching point. The service provider should set the value taking
into account at least the following:

e The desired end-to-end latency.

e The desired compression efficiency.

e The start-up latency.

e The desired switching granularity.

® The desired amount of HTTP requests per second.

e The variability of the expected network conditions.

9.4. Safety margins in availability timing

There exists unavoidable jitter and occur occasional delays in most content delivery architectures. A DASH client
SHOULD avoid being too aggressive in requesting media segments as soon as they become available. f a DASH
client observes issues, such as 404 responses, it SHOULD back up slightly in the requests.

Services SHALL be published so that all timing promises made by the MPD hold under normal operating conditions.
Services MAY indicate an availability window that includes a safety margin. However, such a safety margin will lead
to increased end-to-end latency, so itis a balance to be taken into account.

If a service wishes to impose a safety margin of N seconds, it SHOULD offset MPD@availabilityStartTime into the
future by N seconds when starting the presentation.

9.5. Selecting the minimum update period

The minimum update period signals that MPD@minimumUpdatePeriod worth of future media segments are guaranteed
to become available over that time span after retrieving the MPD.

Setting the value of the minimum update period primarily affects two main aspects of a service:

® A short minimum update period results in the ability to change and announce new content in the MPD on shorter
notice.

e However, by offering the MPD with a small minimum update period, the client requests an update of the MPD

more frequently, potentially resulting in increased uplink and downlink traffic.

The downside of a small minimum update period is that a large number of MPD download requests will be made by
clients. This overhead can be minimized by conditional GET requests and/or in-band MPD update signaling.

If in-band MPD validity signaling is used, MPD@minimumUpdatePeriod SHALL be 0.

9.6. Robust and seamless period transitions

Multilanguage live services are likely to encounter experience transitions from one period to another. For example,
due to changes in the set of available audio/text languages or due to ad insertion.

To ensure robust client operation at period transitions, ensure that all the requirements of the timing model are
satisfied. In particular, periods must be fully covered by media segment references and media samples, including
immediately before/after a period transition. No gaps can occur in any representation!

In many of these cases, some adaptation sets are likely to continue seamlessly across period boundaries, in which
case they SHOULD be marked as period-connected or period-continuous.

9.7. Determining the live edge

If a service does not declare a suggested presentation delay or if the client chooses to ignore it, the client will likely
want to know the position of the live edge in order to perform its own presentation delay calculations.

The live edge is affected by the following factors:

e The time shift buffer determines the set of media segments that a client may present.
e However, not all media segments may be available yet, even if they are within the time shift buffer!

e Furthermore, different representations may have different availability windows (due to
@availabilityTimeOffset).

¢ And finally, different representations may have different media segment lengths (even within the same
representation), which is important because media segments only become available once their end point is

within the availability window.

Accordingly, the live edge can be calculated as follows:

1. Determine the maximum media segment length segment_length_max for each representation.

o With indexed addressing, the index segment provides the exact length of every media segment.

o With simple addressing, the MPD defines a constant length but remember that simple addressing allows
for segment length deviation up to 200% of nominal length.

o With explicit addressing, every media segment may have a unique length and either
MDP@maxSegmentDuration (if present) or custom heuristics should be used.

2. Determine the availability window end position availability _end for each representation.

3. Determine the minimum guaranteed start of the most recent available media segment
available _segment _start for each representation as available_segment_start = availability end -
segment_length_max.

4. The live edge is min(available_segment_start).

A client MAY exclude some representations from live edge calculation if it considers them optional for successful
playback. For example, trick mode representations may become available in a delayed fashion and would
needlessly delay the live edge. See also § 9.8 Trick mode for live services.

Note: When determining the presentation delay a client should also consider other aspects besides the live edge
such as clock synchronization accuracy, expected network performance jitter and desired buffer size.

See also § 9.4 Safety margins in availability timing.

9.8. Trick mode for live services

If trick mode is to be supported for live services, the trick mode representations SHOULD be offered using the same
media segment duration as in the main adaptation set or each media segment duration should aggregate an integer
multiple of the media segments in the main adaptation set.

The content author needs to find a balance between the media segment duration affecting the amount of requests in
fast forward or fast rewind and the availability timing of trick mode media segments. Longer media segment
durations for the trick mode representation delay the availability time of such media segments by the duration of the
media segment - i.e. at the live edge the trick mode may not be fully supported.

Based on this itis a content author’s decision to provide one or more of the following alternatives for trick mode for
live services:

* Provide one trick mode adaptation set that generates a media segment for every media segment in the main
adaptation set. Note that if this adaptation set is used, it may result in increased amount of HTTP requests when
the player does a fast forward or fast rewind.

* Provide one trick mode adaptation set that generates a media segment only after several media segments in
the main adaptation set have been generated and aggregate the trick mode samples in a single media
segment of longer duration. As a result, it is possible that no trick mode samples are available at the live edge
or that some clients consider the live edge to be where the trick mode media segments become available.

e Provide multiple trick mode adaptation sets with different media segment durations, enabling trick mode aware
clients to choose the desired tradeoff between efficiency and delay.

e Provide trick mode adaptation sets using indexed addressing. This requires an entire period worth of data to be
published simultaneously, so is only possible for periods that have a fixed end point and for which all data
already exists.

Combinations of different alternatives are possible.

If a client wants to access a trick mode adaptation set in a live service, it SHOULD attempt to minimize the amount of
requests to the network by preferring media segments with longer duration (if multiple choices are provided).

If a service is converted from live to on-demand, trick mode adaptation sets SHOULD be converted to use indexed
addressing.

9.9. DVB-DASH alignment
For alignment with [DVB-DASH], the following should be considered:

e Reasonable requirements on players around responding to response codes are provided in [DVB-DASH] in
section 10.8.6.

e Further guidelines on live edge aspects are provided in [DVB-DASH] section 10.9.2.

DVB-DASH] also provides recommendations in order to apply weights and priorities to different networks in a muilti-
BaseURL offering in section 10.8.2.1.

9.10. Converting a live service to an on-demand service

The major difference between live and on-demand services is that live services have their timeline mapped to a real
time clock and have an MPD that may change. This behavior is signaled by MPD@type="dynamic". To transform a live
service to an on-demand service, it may often be sufficient to set MPD@type="static" and to remove any signaling in
the MPD that is restircted to dynamic MPDs.

There is no need to alter media segments when transforming a live service to an on-demand service.

Consider the time span of available content. A live service has a time shift buffer that may only allow a recent time
span of content to be presented as a live service. If you wish to publish a larger time span as a recording, creating a
separate on-demand variant of the MPD in parallel with the on-demand variant may be sensible.

A live service MAY be converted to an on-demand service without changing the URL, by simply replacing the
dynamic MPD with a static MPD. Maintaining the same URLs for media segments might be beneficial in terms of
CDN efficiency.

See also §5.2.9.5.3 End of live content.

9.11. Reliable and consistent-delay live service

I ISSUE 23 This and everything below needs to be updated to conform to timing model

I ISSUE 24 'Needs proper Bikeshed formatting and references

A service provider wants to run a live DASH service according to the below Figure 8. As an example, a generic
encoder for a 24/7 linear program or a scheduled live event provides aproduction encoded stream. Such streams
typically includ inband events to signal program changes, ad insertion opportunities and other program changes. An
example for such signalling are SCTE-35 [54] messages. The stream is then provided to one or more Adaptive
Bitrate (ABR) encoders, which transcodes the incoming stream into multiple bitrates and also conditions the stream
for segmentation and program changes. These multiple encoders may be used for increased ABR stream density
and/are then distributed downstream for redundancy purposes. The resultant streams are received by theDASH
generation engines that include: MPD generator, packager and segmenter.Typically the following functions are
applied by the MPD packager:

e Segmentation based on in-band information in the streams produced by the ABR encoders

e Encapsulation into ISO BMFF container to generate DASH segments

Dynamic MPD generation with proper customization options downstream

Event handling of messages

e Any other other DASH related adaptation

Downstream, the segments may be hosted on a single origin server, or in one or multiple CDNs. The MPD may even
be further customized downstream, for example to address specific receivers. Customization may include the
removal of certain Adaptation Sets that are not suitable for the capabilities of downstream clients. Specific content
may be spliced based on regional services, targeted ad insertion, media blackouts or other information. Events
carried from the main encoder may be interpreted and removed by the MPD packager, or they may be carried
through for downstream usage. Events may also added as MPD events to the MPD.

In different stages of the encoding and distribution, errors may occur (as indicated by lightning symbols in the
diagram), that for itself need to be handled by the MPD Generator and packager, the DASH client, or both of them.
The key issue for this section is the ability for the DASH Media Presentation Generator as shown in to generate
services that can handle the incoming streams and provide offerings such that DASH clients following DASH-IF IOPs
can support.

Hence this section primarily serves to provide guidelines for implementation on MPD Generators and Packagers.

Encoder

MPD
Modification
(e.g. customization)

Events (e.g. Ad
Opportunities)

Multi bitrate Streams DASH Client
with Segment Boundaries
and Eventtriggers MPD Generator
ABR Encoders — . Packager and
(incl. Conditioning) Segmenter

- CDNs hosting
Origin Server R .o onts and

MPDs

Figure 37 Example live service deployment architecture.

The following scenarios are considered in the service setup:

e The distribution latency should be consistent, typically what is observed for broadcast TV services. This means
that the MPD Generator should add minimum delay, and the service should be setup such that the delay
between MPD generator and DASH client playout is consistent, and preferably small.

e Program events may occur for different reasons, for example Program changes, switches from Programs to
Advertisements or vice versa, media blackouts or other program changes. if MPEG2TS] is used at broadcast
origination points, the Program Map Table (PMT) typically indicates such changes. Typically, these changes
also result in discontinuities for in the media timeline. Such changes are typically anticipated only on short
notice, i.e. within a few seconds. In the following we refer to the time that changes are announced as change
lead time. The service should also provide a minimum change lead time, i.e. the smallest time in media time
between the change being announced in the stream and the time between the change occurs. Changes may for
example include one or more of the following:

o Number of source audio languages or formats can change. For example:

= Programming with English and Spanish to other content with only English
= Descriptive audio may disappear / reappear
= Programming with 5.1 E-AC-3 and AAC Stereo content to other content with only Stereo AAC
o Resolution or format of source video content can change, e.g. HD to/from SD, HDR to/from SDR, etc.
o Codecs may change, or at least the profile or level of the codecs
o The number of Representations in an Adaptation Set may change
o A distribution network may be changed, added or removed.

e The segmentation is determined by the ABR encoders. This encoding may result in occasional slight variations

in segment durations during a period (as compared to the last segment in a period) due to encoding
optimizations around scene changes near the segment duration point (for example: making a segment slightly
shorter or longer to align segment IDR to a scene change).

¢ Unanticipated losses and operational failures or outages, possibly happen just for a single encoding (typically at
the input of the encoder, but also possibly also downstream packaging).

o Examples are

= Anencoder for one or more Representations or the output of an encoder fails for some time and does
not produce content.

= An encoder or the input to the encoder or the output of the encoder fails for a media
component/Adaptation Set for some time and do not produce content.

= All encoding or the input to the encoder fails for some time.

o Inall cases an MPD can still be written and the MPD is up and running. Also in the distribution, single
Segments may be lost for different reasons and the client typically gets 404.

e MPD updates should be minimized, whereby MPD updates includes the following aspects for every MPD
request

o Client sending uplink requests for MPDs
o Sending full MPD with every request from the server to the client
o Parsing and processing of MPD at the client

o Writing a new MPD on the server if the MPD is changed
I ISSUE 25 'Check and align references in original text.

The subchapters here outline some possibilities for solving the above challenges.

9.11.1. Consistent latency

The scenario does not ask for very low latency, but for consistent latency. Latency can primarily be controlled by the
following means:

e Segment duration: the segment duration typically directly impacts the end-to-end latency. Smaller segment sizes
provide improved latency and segments of 1-2 seconds may be chosen, if latency is an important aspect.
However, too small segments may result in issues, as compression efficiency decreases due to more frequent
closed GOPs in the elementary stream. In addition, the number of files/requests to be handled is higher, and
finally, with shorter segments, TCP throughput may be such that not the full available capacity on the link can be
exploited. Annex B.4 and clause 4.3.3.2.2 provide some guidelines on this.

e [ffiles are available in chunks on the origin, for example due to specific encoding or delivery matters, chunked
delivery may be supported. If this feature is offered, then the @availabilityTimeOffset attribute may be provided
to announce how much earlier than the nominal segment availability the segment can be accessed.

e Inorder to provide tight synchronization between client and server, and therefore providing the receiver the
ability to request the segment at the actual segment availability time, the availability time synchronization as
defined in clause 4.7 should be provided and signalled in the MPD. Typically support for http-xsdate is sufficient
for consistent latency support. Accurate NTP synchronization is recommended, but not required for the MPD
packager or the DASH client as long as the time synchronization APl is provided.

e ltis proposed that a client consistently implements and joins at a segment that is slightly offset (e.g. 4 segments
earlier) from the live edge segment. The exact number depends on the distribution system (for example in a fully
managed environment, the offset may be smaller in contrast to best effort networks). The MPD author may
support consistency by providing a suggested presentation delay in the service offering. For details on joining at
the live edge, please refer to clause 4.3.4.4.2.

9.11.2. Unanticipated new periods

An MPD has a certain duration after download during which the service guarantees that the information within
remains valid, signaled by MPD@minimumUpdatePeriod. To avoid that the clients take future segment existence for
granted even if a sudden change on the service offering is necessary, the MPD service provider must set to the
MPD@minimumUpdatePeriod to a low value.

In the most conservative case, [[#live-mup-zerolthe MPD author sets the MPD@minimumUpdatePeriod to O]]. Then no
promise for future segments is provided. The DASH client is forced to revalidate the MPD prior to any new Segment

request.
For controlling future MPD validity, basically two options exist:

1. Client downloads a fresh MPD before every Segment request (or batch of requests), preferably using a
conditional GET in order to avoid unnecessary downlink traffic and processing in the client.

2. Client relies on MPD validity expiration events in event messages, if content provider announces those in the
MPD and by this, it can revalidate.

The two methods are not mutually exclusive.

9.11.3. Media segment duration variations

Variable media segment durations need to be correctly signed in the MPD. The mechanism depends on the
addressing mode:

1. Simple addressing allows for a deviation of up to 50% segment duration in segment start points, allowing for
some drift to be compensated.

o [fthe DASH packager receives a segment stream such that the drift can no longer be compensated, then a
new period SHALL be started, adjusting the addressing parameters to compensate. The representations
SHOULD also be signaled as period-connected or period-continuous.

2. Explicit addressing allows the duration of each media segment to be defined explicitly.

Media segments SHALL NOT have a duration greater than MPD@maxSegmentDuration in any situation.

9.11.4. Losses and operational failures

One of the most complex aspects are occasional operational issues, such as losses, outages, failovers of input
streams, encoders, packagers and distribution links. Section 4.8 provides detailed overview on available tools that
should be used by network service offering and clients in order to deal with operational issues. Several types of
losses may occur:

Seg Seg Seg Seg Seg Seg Seg Seg No or concealed Loss

loss

Seg Seg Seg Seg Seg Seg Seg Seg Loss w/in a Segment

loss

Seg Seg Seg Seg Seg Seg Seg Seg Loss at end of a Segment

Loss at anticipated Segment
Seg Seg Seg Seg Seg Boundary. Next segment does
not start at predicted time

loss

Seg Seg Seg

loss

Seg Seg Seg Seg Seg Seg Seg Loss of Segment Boundary

Loss across multiple
segments

loss

Seg Seg Seg Seg Seg

Figure 38 Examples of different types of data loss.

Losses may occur in the middle of a Segment, at the end of a Segment, at the start of a new Segment. At the
elementary stream level, losses may be within a compressed access unit (AU), producing a syntactically corrupt
bitstream, or may be the result of the ABR encoder simply not encoding a source frame in which case the duration of
the prior AU is extended producing a conforming bitstreams. Losses may impact an entire Segment or may just

impact a part of the Segment. Typically, service oriented losses will occur until the next Random access point, i.e. a
loss is to be signaled from the start of the lost sample up to the next random access point, typically coinciding with
the start of a new Segment.

IOP defines some basic constraints in the timing model:

e Periods are covered by media segments in their entirety.

e Periods are covered by media samples in their entirety.

Deviation from these constraints is not allowed, even in case of data loss. This means that theer are basically two
options:

1.
2.

A service MAY replace lost data with padding data.

A service MAY start a new period when the data loss starts and ends, removing the affected representations for
the duration of the loss.

Of course, it is not possible for a service to compensate for data loss in the CDN layer. Clients are expected to
survive arbitrary 404 errors that occur due to CDN faults, either by retrying, switching to another CDN (base URL),
switching to another representation or automatically seeking forward.

I ISSUE 26 Is there something that goes into more depth about 404s? These statements need a better home.

9.11.5. Minimizing MPD updates

MPD updates, the frequency of MPD updates and the actions included in MPD updates are different ones, and their
effects may have different impacts on deployments. To avoid confusion on the generally overloaded term, some
more details are discussed in the following section. In non-DASH adaptive streaming solutions, MPD updates result
in the following additional processing and delivery overhead:

1.

The client sends an uplink requests for the MPD. At least from a CDN perspective, this is issue is considered
less critical, typically the bounds of operation are reached by throughout, not by the number of requests.

. The server needs to send a full MPD with every request, which for itself causes overhead from all the way of the

origin server to the client. This is in particular relevant if the manifest contains a list of URLs, and some timeshift
buffer is maintained.

. Yet another aspect is the regular parsing and processing of the manifest in the client. Whereas the processing is

likely less of a burden, the consistency across two parsing instances is relevant and requires to keep state.

. MPD updates may also result in writing a new MPD on the server. This may be less problematic for certain

cases, especially for unicast, but it results in significant overhead if DASH formats are used for broadcast.

DASH-IF IOP provides different means to avoid one or the more of the above issues. Assuming that the
MPD@minimumUpdatePeriod is set to a low value for reasons documented above, then issues mentioned above
can be addressed by the following means in DASH-IF IOP:

1.

Client Requests: can be avoided by signalling inband that an MPD is has expired. The most obvious tool is the
use of Inband Events with MPD expiry. However, this requires inband events being added during packaging.

Sending Full MPD: Instead of requesting the full MPD, the client can support this operation by issuing a
conditional GET. If the MPD has not changed, no MPD needs to be sent and the downlink rate is small.
However, this requires the usage of @duration or SegmentTimeline with @r=-1.

MPD Parsing and Processing: This can be avoided by using either of the solutions documented above.

MPD writing on server: This goes hand-in-hand with 2, i.e. the usage of @duration or SegmentTimeline with

@r=-1.

Generally, DASH-IF IOP provide several tools to address different aspects of minimizing MPD updates. Based on
the deployment scenario, the appropriate tools should be used. However, it is preferable that DASH clients support
different tools in order to provide choices for the service offering.

9.11.6. Proposed service configuration and MPD generation logic

The core concept is the availability of a segment stream at the input to a packager. The segment stream may be
made available as individual segments or as boundary markers in a continuous stream. In addition, the stream may
contain information that is relevant for the packager, such as program changes. The segment stream determines for
each segment the earliest presentation time, the presentation duration, as well as boundaries in program offerings.

Furthermore, it is assumed that multiple bitrates may exist that are switchable. In the following we focus on one

segment stream, but assume that in the general case multiple bitrates are available and the encoding and segment
streams are generated such that they can be switched.

The high-level assumptions for the service are summarized in 4.11.2. Based on these assumptions, a more detailed
model is provided.

e A segment stream is provided for each Representation. The segmentation is the same for Representations that
are included in one Adaptation Set. Each segment i has assigned a duration d[i] and an earliest presentation
time ept[i]. In addition, the segment stream has a nominal segment duration dO that the ABR encoders attempts
to maintain. However, variation may occur for different reasons, documented above.

e |osses may occur in the segment stream, spanning a part of a segment, multiple segments, a full segment and
so on. The loss may be in one Representation or in multiple Representations at the same time (see above for
more discussions).

e The latency of the time that the segment is made available to the DASH packager and that it is offered as an
available segment in the MPD should be small, i.e. the segment availability time should be shortly after the time
when the full segment is received in the DASH packager. Any permitted delay by the MPD Packager can be
view as additive to change lead time and may therefore improve efficiency and robustness, but may at the same
time increase the end-to-end latency.

e Changes in the program setup may occur, that signal changes as discussed in4.11.2. A change is possibly
announced with a time referred to as change lead time. Note that signal changes such as SCTE-35 only
indicate where a change may occur, it does not indicate what type of change will occur.

The different scenarios are summarized in Figure 10. For the third part, it shows the notion of the change lead time.
Segment of Period with index j are provided. In this case, at the start of segment (j, i+1) (i.e. its earliest presentation
time) an indication is provided that the media will change after segment (j, i+2), i.e. the change lead time is d[j, i+1] +
d[j, i+2]. A new Period j+1 is generated that starts with a new segment numbering.

do + eps do - eps

I NN I T
SAST[i] SAST[i+1] SASTT[HZ] SASTT[i+3]

I N S T
SASTI[] SAST[i+1] SASTI[i+2] SASTT[i+3]

Change lead time

I

SAST(i] SAST[i+1] SAST[i+2] SAST[i+3]

Figure 39 Different properties of a segment stream.

Based on the discussions in 4.11.2, proposed service configuration for such a service are proposed. The service
configuration differentiates two deployment scenarios:

1. Clients implementing the simple live client, i.e. no emsg support and no segment parsing is implemented.

2. Clients implementing the main client, i.e. emsg is supported and segment parsing is implemented.

9.11.6.1. Service configuration for simple live:

Assuming that the input stream is a segment stream with the properties documented above is received by the DASH
packager.

The DASH packager may operate as follows:

e The @minimumUpdatePeriod is set to a value that is equal or smaller than the change lead time provided by the
segment stream.

e The @timescale of the Adaptation Set is set to the timescale of the included media

e The @duration attribute is set such that the nominal duration dO is documented in the MPD for this Adaptation
Set.

* $Number$ is used of segment templating.

e With incoming segments of the segment stream, a new segment is generated by the DASH packager and the
DASH packager checks the validity of the MPD offering. If still valid, no changes to MPD are done. Only if
changes are done that are no longer valid, a new MPD is written. Specifically,

o The MPD start time of the next segment must be in the range of EPT - PTO - 0.5DUR and EPT - PTO +
0.5DUR with DUR the value of @duration.

o Ifthis is not fulfilled a new Period is written that includes the following:

= The Period@start is set such that the MPD start time is correct.
= The @presentationTimeOffset is set to the EPT of the first segment
= The @startNumber is set to the first segment in the new Period.
= The Adaptation Sets are continued by providing Period continuity signallng with each Adaptation Set.
e when an encoder fails for one or more specific Representations to generate the next segment, then the DASH
content generator
o terminates the Segment with the last sample in the segment, (which is possibly corrupted)

o generates a new MPD as follows:

= The @minimumUpdatePeriod is set to 0.

= [fall or at least many Representations fail, the Period@duration is set to the value of the media time in
the Period that is still available.

= [fonly a subset of the Representations fail, the @presentationDuration for the last segment is set to the
value of the last presentation time in the Representation that is still available.

= By doing so, the content provider basically informs the DASH client that for the duration of the Segment
as announced, no media is available. The DASH client revalidates this after every Segment duration.
The MPD is not changed on the server until either the decoder resumes or the Media Presentation is
terminated.

= [f the @minimumUpdatePeriod is long, then the client may request non-existent segments, which itself
may then trigger that the DASH client revalidates the MPD. If the DASH client has the possibility, it
should add the ‘Imsg’ brand as a compatibility brand to the last generated segment. In addition, when
the segment is distributed over HTTP, the HTTP header should signal the content type of the segment
including the compatibility brand ‘Imsg’. If the DASH client can identify this, it is expected to refetch the
MDP and may by this means observe the early terminated Period or Representations.

o Only after the encoder resumes, a new MPD is written as follows:
= A new Period is provided with Period@start according to the value of the new Period. The

@presentationTimeoffset of the Representation of the Period shall match the the earliest presentation
time of the newly generated Segment. If appropriate, Period connectivity should be signaled.

= The @minimumUpdatePeriod is set again to the minimum change lead time.

e when a program change is announced, generates a new MPD as follows:

o The @minimumUpdatePeriod is set to 0.

e When the program change occurs

o Write a new MPD with all the parameters

o Reset the @minimumUpdatePeriod is set to a value that is equal or smaller than the change lead time
provided

9.11.6.2. Service configuration for main live

Assuming that the input stream is a segment stream with the properties documented above is received by the DASH
packager.

The DASH packager may operate as follows:

e The @minimumUpdatePeriod is set to 0.

e The @timescale of the Adaptation Set is set to the timescale of the included media
o The segment timeline is used. Addressing may used: $Number$ or $Time$.

e The MPD is assigned an MPD@publishTime

e With incoming segments of the segment stream, following the rules in 4.5.2.2 the DASH Packager uses the
Segment Timeline to accurately signal the different segment durations. If the segment duration changes, then the
@r attribute of the last S element in the Segment timeline is terminated and a new S element is added to the
MPD with the new segment duration. The values @t and @d need to be set correctly:

o @r of the last segment element may be set to -1. In this case a new MPD is only written if the segment
duration changes

o @r of the last segment element may be set to the actual published number of segments. In this case a new
MPD is written for each new segment

e Whenever a new MPD is written, the MPD@publishTime is updated.
e when an encoder fails for one or more specific Representations to generate the next segment, then the DASH
packager
o terminates the Segment with the last sample in the segment (may be corrupt)

o adds emsg to this last generated segment. The MPD validity expiration is set to the duration of the current
segment or smaller. This emsg may be added to all Representation that have observed this failure, to all
Representations in the Adaptation Set or to all Representations in the MPD. The content author should be
aware that if the emsg is not signaled with all Representations, then there exist cases that a switch to the
erroneous Representation causes a request to a nonexisting Segment. That loss would be signaled in the
MPD, but the client is not aware that an update of the MPD is necessary.

o The emsg shall be added to all Representations that announce that they carry the message as aninband
stream.

o The MPD is updated on the server such that the last generated segment is documented in the Segment
timeline and no new S element is added to the timeline.

o Only after the Representation(s) under loss resumes, a new S element is written with S@t matching the
earliest presentation time of the newly generated Segment. The DASH client with it next update will resume
and possibly take into account again this Representation.

o Ifthe encoder does not resume for a specific Representation over a longer time, it is recommended to
terminate this Period and remove this Representation at least temporarily until the encoder resumes again.
Period continuity should be signaled.

e when the program change occurs

o adds emsg to this last generated segment. The MPD validity expiration is set to the duration of the current
segment or smaller. This emsg shall be added to all Representations that announce the Inband Event
stream for the MPD validity expiration.

o Write a new MPD with all the parameters

e Whenever a new MPD is written, the MPD@publishTime is updated.

The DASH client having received an MPD that signals gaps is expected to either look for alternative
Representations that are not affected by the loss, or if not possible, do some appropriate error concealment. The
DASH client also should go back regularly to check for MPD updates whether the Representation gets available
again.

10. Ad insertion

I ISSUE 27 'Needs to be checked for conformance with timing model.
I ISSUE 28 'Needs proper Bikeshed formatting and referencing

I ISSUE 29 'Needs deduplication of DASH concepts that are re-defined here.

This section provides recommendations for implementing ad insertion in DASH. Specifically, it defines the reference
architecture and interoperability points for a DASH-based ad insertion solution.

The baseline reference architecture addresses both server-based and app-based scenarios. The former approach

is what is typically used for Apple HLS, while the latter is typically used with Microsoft SmoothStreaming and Adobe
HDS.

The following definitions are used in this section:

Ad Break
A location or point in time where one or more ads may be scheduled for delivery; same as avail and placement
opportunity.

Ad Decision Service
functional entity that decides which ad(s) will be shown to the user. It interfaces deployment-specific and are out
of scope for this document.

Ad Management Module
logical service that, given cue data, communicates with the ad decision service and determines which
advertisement content (if at all) should be presented during the ad break described in the cue data.

Cue
indication of time and parameters of the upcoming ad break. Note that cues can indicate a pending switch to an
ad break, pending switch to the next ad within an ad break, and pending switch from an ad break to the main
content.

CDN node
functional entity returning a segment on request from DASH client. There are no assumptions on location of the
node.

Packager
functional entity that processes conditioned content and produces media segments suitable for consumption by
a DASH client. This entity is also known as fragmenter, encapsulater, or segmenter. Packager does not
communicate directly with the origin server — its output is written to the origin server’s storage.

Origin
functional entity that contains all media segments indicated in the MPD, and is the fallback if CDN nodes are
unable to provide a cached version of the segment on client request. Splice Point: point in media content where
its stream may be switched to the stream of another content, e.g. to an ad.

MPD Generator
functional entity returning an MPD on request from DASH client. It may be generating an MPD on the fly or
returning a cached one.

XLink resolver
functional entity which returns one or more remote elements on request from DASH client.

DASH ad insertion relies on several DASH tools defined in [MPEGDASH], which are introduced in this section. The
correspondence between these tools and ad insertion concepts are explained below.

10.1. Remote elements

Remote elements are elements that are not fully contained in the MPD document but are referenced in the MPD with
an HTTP-URL using a simplified profile of XLink.

A remote element has two attributes, @xlink:href and @xlink:actuate. @xlink:href contains the URL for the
complete element, while @x1ink:actuate specifies the resolution model. The value onLoad requires immediate
resolution at MPD parse time, while onRequest allows deferred resolution at a time when an XML parser accesses
the remote element. In this text we assume deferred resolution of remote elements, unless explicitly stated otherwise.
While there is no explicit timing model for earliest time when deferred resolution can occur, the specification strongly
suggests it should be close to the expected playout time of the corresponding Period. A reasonable approach is to
choose the resolution at the nominal download time of the Segment.

e

N
HTTP GET{@xlink:href) ‘ I:_r Period ignored |

L No

< Success? 3— No \Val id peri 0d7>
Yes Yes
l J
{ Period

Replace element

_ presented /

-

Figure 40 XLink resolution

Resolution (a.k.a. dereferencing) consists of two steps. Firstly, a DASH client issues an HTTP GET request to the
URL contained in the @x1ink:href, attribute of the in-MPD element, and the XLink resolver responds with a remote
element entity in the response content. In case of error response or syntactically invalid remote element entity, the
@xlink:href and @x1link:actuate attributes the client shall remove the in-MPD element.

If the value of the @x1ink:href attribute is urn:mpeg:dash:resolve-to-zero:2013, HTTP GET request is not issued,
and the in-MPD element shall be removed from the MPD. This special case is used when a remote element can be
accessed (and resolved) only once during the time at which a given version of MPD is valid.

If a syntactically valid remote element entity was received, the DASH client will replace in-MPD element with remote
period entity. Once a remote element entity is resolved into a fully specified element, it may contain an @x1ink:href
attribute with @x1ink:actuate setto onRequest, which contains a new XLink URL allowing repeated resolution. Note
that the only information passed from the DASH client to the XLink resolver is encoded within the URL. Hence there
may be a need to incorporate parameters into it, such as splice time (i.e., PeriodStart for the remote period) or cue
message.

Note: In ISO/IEC 23009-1:2014/Cor.3 it is clarified that if multiple top-level remote elements are included, the
remote element entity is not a valid XML document.

10.2. Periods

Periods are time-delimited parts of a DASH Media Presentation. The value of PeriodStart can be explicitly stated
using the Period@start attribute or indirectly computed using Period@duration of the previous Periods.

Precise period duration of period i is given by PeriodStart(i+1) — PeriodStart(i). This can accommodate the case
where media duration of period i is slightly longer than the period itself, in which case a client will schedule the start
of media presentation for period i+1 at time PeriodStart(i+1).

Representation@presentationTimeOffset specifies the value of the presentation time at PeriodStart(i).

10.3. Segment availability

In case of dynamic MPDs, Period-level BaseURL@availabilityTimeOffset allow earlier availability start times. A
shorthand notation @availabilityTimeOffset="INF" at a Period-level BaseURL indicates that the segments within this
period are available at least as long as the current MPD is valid. This is the case with stored ad content. Note that
DASH also allows specification of @availabilityTimeOffset at Adaptation Set and Representation level.

10.4. Seamless transition

The DASH specification says nothing about Period transitions — i.e., there are no guarantees for seamless
continuation of playout across the period boundaries. Content conditioning and receiver capability requirements
should be defined for applications relying on this functionality. However, Period continuity or connectivity should be
used and signaled as defined in section 3.2.12 and ISO/IEC 23009-1:2014/Amd.3 [4].

10.5. Period labeling

Period-level Assetldentifier descriptors identify the asset to which a given Period belongs. Beyond identification, this
can be used for implementation of client functionality that depends on distinguishing between ads and main content
(e.g. progress bar and random access).

10.6. DASH events

DASH events are messages having type, timing and optional payload. They can appear either in MPD (as period-
level event stream) or inband, as ISO-BMFF boxes of type emsg. The emsg boxes shall be placed at the very
beginning of the Segment, i.e. prior to any media data, so that DASH client needs a minimal amount of parsing to
detect them.

DASH defines three events that are processed directly by a DASH client: MPD Validity Expiration, MPD Patch and
MPD Update. All signal to the client that the MPD needs to be updated — by providing the publish time of the MPD
that should be used, by providing an XML patch that can be applied to the client’s in-memory representation of MPD,
or by providing a complete new MPD. For details please see section 4.5.

User-defined events are also possible. The DASH client does not deal with them directly — they are passed to an

application, or discarded if there is no application willing or registered to process these events. A possible client API
would allow an application to register callbacks for specific event types. Such callback will be triggered when the
DASH client parses the emsg boxin a Segment, or when it parses the Event element in the MPD.

In the ad insertion context, user-defined events can be used to signal information, such as cue messages (e.g. SCTE
35 [54])

10.7. MPD updates

F MPD@minimumUpdatePeriod is present, the MPD can be periodically updated. These updates can be
synchronous, in which case their frequency is limited by MPD@minimumUpdatePeriod. In case of the main live
profiles MPD updates may be triggered by DASH events. Fir details refer to section 4.5.

When new period containing stored ads is inserted into a linear program, and there is a need to unexpectedly alter
this period the inserted media will not carry the emsg boxes — these will need to be inserted on-the-fly by proxies. In
this case use of synchronous MPD updates may prove simpler.

MPD@publishTime provides versioning functionality: MPD with later publication times include all information that
was included all MPDs with earlier publication times.

10.8. Session information

In order to allow fine-grain targeting and personalization, the identity of the client/viewer, should be knowni.e.
maintain a notion of a session.

HTTP is a stateless protocol, however state can be preserved by the client and communicated to the server.

The simplest way of achieving this is use of cookies. According to RFC 6265 [41], cookies set via 2xx, 4xx, and 5xx
responses must be processed and have explicit timing and security model.

10.9. Tracking and reporting

The simplest tracking mechanism is server-side logging of HTTP GET requests. Knowing request times and
correspondence of segment names to content constitutes an indication that a certain part of the content was
requested. If MPDs (or remote element entities) are generated on the fly and identity of the requester is known, itis
possible to provide more precise logging. Unfortunately this is a non-trivial operation, as same user may be
requesting parts of content from different CDN nodes (or even different CDNs), hence log aggregation and
processing will be needed.

Another approach is communicating with existing tracking server infrastructure using existing external standards. An
IAB VAST-based implementation is shown in section 5.3.3.7.

DASH Callback events are defined in ISO/IEC 23009-1:2014 AMD3 [4], are a simple native implementation of time-
based impression reporting (e.g., quartiles). A callback event is a promise by the DASH client to issue an HTTP
GET request to a provided URL at a given offset from PeriodStart. The body of HTTP response is ignored. Callback
events can be both, MPD and inband events.

10.10. Ad insertion architectures

The possible architectures can be classified based on the location of component that communicates with the ad
decision service: a server-based approach assumes a generic DASH client and all communication with ad decision
services done at the server side (even if this communication is triggered by a client request for a segment, remote
element, or an MPD. The app-based approach assumes an application running on the end device and controlling
one or more generic DASH clients.

Yet another classification dimension is amount of media engines needed for a presentation — i.e., whether parallel
decoding needs to be done to allow seamless transition between the main and the inserted content, or content is
conditioned well enough to make such transition possible with a single decoder.

Workflows can be roughly classified into linear and elastic. Linear workflows (e.g., live feed from an event) has ad
breaks of known durations which have to be taken: main content will only resume after the end of the break and the
programmer / operator needs to fill them with some inserted content. Elastic workflows assume that the duration of
an ad break at a given cue location not fixed, thus the effective break length can vary (and can be zero if a break is
not taken).

10.11. Server-based architecture

Media Engine
Ad Decision Server
T
ALink
link I : Resolver
- Periads
Segments
and timing
o Content = CLgse—
MPD Generator Packager
Content
+inband events
!
DASH s
: pme:
Access Client |
CDN/Origin

Figure 41 Server-based architecture

In the server-based model, all ad-related information is expressed via MPD and segments, and ad decisions are
triggered by client requests for MPDs and for resources described in them (Segments, remote periods).

The server-based model is inherently MPD-centric — all data needed to trigger ad decision is concentrated in the
MPD. In case where ad break location (i.e., its start time) is unknown at the MPD generation time, it is necessary to
rely on MPD update functionality. The two possible ways of achieving these are described in 5.1.3.5.

In the live case, packager receives feed containing inband cues, such as MPEG-2 TS with SCTE 35 cue messages
[54]. The packager ingests content segments into the CDN. In the on demand case, cues can be provided out of
band.

Ad management is located at the server side (i.e., in the cloud), thus all manifest and content conditioning is done at
the server side.

10.11.1. Implementation basics

A single ad is expressed as a single Period element.

Periods with content that is expected to be interrupted as a result of ad insertion should contain explicit start times
(Period@start), rather than durations. This allows insertion of new periods without modifying the existing periods. If a
period has media duration longer then the distance between the start of this period and the start of next period, use
of start times implies that a client will start the playout of the next period at the time stated in the MPD, rather than
after finishing the playout of the last segment.

An upcoming ad break is expressed as Period element(s), possibly remote.

10.11.2. Remote period elements

Remote Periods are resolved on demand into one or more than one Period elements. It is possible to embed
parameters from the cue message into the XLink URL of the corresponding remote period, in order to have them
passed to the ad decision system via XLink resolver at resolution time.

In an elastic workflow, when an ad break is not taken, the remote period will be resolved into a period with zero
duration. This period element will contain no adaptation sets.

If a just-in-time remote Period dereferencing is required by use of @x1ink:actuate="onRequest", MPD update
containing a remote period should be triggered close enough to the intended splice time. This can be achieved
using MPD Validity events and full-fledged MPD update, or using MPD Patch and MPD Update events (see sec.
5.1.3.5 and 5.1.3.4). However, due to security reasons MPD Patch and MPD Update events should only be used
with great care.

In case of Period@xlink:actuate="onRequest", MPD update and XLink resolution should be done sufficiently early
to ensure that there are no artefacts due to insufficient time given to download the inserted content. Care needs to be

taken so that the client is given a sufficient amount of time to (a) request and receive MPD update, and (b)
dereference the upcoming remote period.

Note: It may be operationally simpler to avoid use of Period@xlink:actuate="onRequest", dereferencing in case
of live content.

10.11.3. Timing and dereferencing

The only interface between DASH client and the XLink resolver is the XLink URL (i.e., the Period@xlink:href
attribute).After resolution, the complete remote Period element is replaced with Period element(s) from the remote
entity (body of HTTP response coming from XLink resolver). This means that the XLink resolver is (in the general
case) unaware of the exact start time of the ad period.

In case of linear content, start of the ad period is only known a short time before the playback. The recommended
implementation is to update the MPD at the moment the start of the ad period is known to the MPD generator.

The simplest approach for maintaining time consistency across dereferencing is to have the MPD update adding a
Period@duration attribute to the latest (i.e., the currently playing) main content period. This means that the MPD
resolver needs to include the Period@duration attribute into each of the Period elements returned in the remote
entity. The downside of this approach is that the DASH client needs to be able to update the currently playing period.

An alternative approach is to embed the desired value of Period@start of the first period of the remote entity in the
XLink URL (e.g., using URL query parameters). This approach is described in clause 5.3.5. The downside of this
alternative approach is that the DASH specification does not constrain XLink URLs in any way, hence the XLink
resolver needs to be aware of this URL query parameter interface defined in clause 5.3.5.

10.11.4. Asset identifiers

Assetldentifier descriptors identify the asset to which a Period belongs. This can be used for implementation of client
functionality that depends on distinguishing between ads and main content (e.g. progress bar).

Periods with same Assetldentifier should have identical Adaptation Sets, Initialization Segments and same DRM
information (i.e., DRM systems, licenses). This allows reuse of at least some initialization data across periods of the
same asset, and ensures seamless continuation of playback if inserted periods have zero duration. Period continuity
or connectivity should be signaled, if the content obeys the rules.

Assetldentifier

schemeldUri="urn:org:dashif:asset-id:2013"
value="md:cid:EIDR:10.5240%2f0EFB-02CD-126E-8092-1E49-W"

MPD

Period Al: Ad Break #1

Period M1: 00:00:00-00:15:00

h 4

Period A2: Ad Break #2

Period M2: 00:15:00-00:30:00

h

Period A3: Ad Break #3

h

Period M3: 00:30:00-00:42:00

Figure 42 Using an asset identifier

10.11.5. MPD updates

MPD updates are used to implement dynamic behavior. An updated MPD may have additional (possibly — remote)
periods. Hence, MPD update should be triggered by the arrival of the first cue message for an upcoming ad break.
Ad breaks can also be canceled prior to their start, and such cancellation will also trigger an MPD update.

Frequent regular MPD updates are sufficient for implementing dynamic ad insertion. Unfortunately they create an
overhead of unnecessary MPD traffic — ad breaks are rare events, while MPD updates need to be frequent enough if
a cue message is expected to arrive only several seconds before the splice point. Use of HTTP conditional GET
requests (i.e., allowing the server to respond with "304 Not Modified" if MPD is unchanged) is helpful in reducing this
overhead, but asynchronous MPD updates avoid this overhead entirely.

DASH events with scheme "urn:mpeg:dash:event:2013" are used to trigger asynchronous MPD updates.

The simple mapping of live inband cues in live content into DASH events is translating a single cue into an MPD
Validity expiration event (which will cause an MPD update prior to the splice time). MPD Validity expiration events
need to be sent early enough to allow the client request a new MPD, resolve XLink (which may entail communication
between the resolver and ADS), and, finally, download the first segment of the upcoming ad in time to prevent
disruption of service at the splice point.

If several emsg boxes are present in a segment and one of them is the MPD Validity Expiration event, emsg carrying it
shall always appear first.

10.11.6. MPD events

In addition to tracking events (ad starts, quartile tracking, etc.) the server may also need to signal additional
metadata to the video application. For example, an ad unit may contain not only inline linear ad content (that is to be
played before, during, or after the main presentation), it may also contain a companion display ad that is to be shown
at the same time as the video ad. It is important that the server be able to signal both the presence of the companion
ad and the additional tracking and click-through metadata associated with the companion.

With that said, there is no need to have a generic DASH client implement this functionality — it is enough to provide
opaque information that the client would pass to an external module. Event @schemeldUri provides us with such
addressing functionality, while MPD events allow us to put opaque payloads into the MPD.

10.11.7. Workflows

In the workflows below we assume that our inputs are MPEG-2 transport streams with embedded SCTE 35 cue
messages [54]. In our opinion this will be a frequently encountered deployment, however any other in-band or out-of-
band method of getting cue messages and any other input format lend themselves into the same model.

10.11.8. Linear workflow

A real-time MPEG-2 TS feed arrives at both packager and MPD generator. While real-time multicast feeds are a
very frequently encountered case, the same workflow can apply to cases such as ad replacement in a pre-recorded
content (e.g., in time-shifting or PVR scenarios).

MPD generator generates dynamic MPDs. Packager creates DASH segments out of the arriving feed and writes
them into the origin server. Client periodically requests the MPDs so that it has enough time to transition seamlessly
into the ad period.

Packager and MPD generator may be tightly coupled (e.g. co-located on the same physical machine), or loosely
coupled as they both are synchronized only to the clock of the feed.

e
,.r" T
<" P::r.“.:,“w ~ e | Update MPDith
W Tt e remate pariod

> Butfer packets and
MPEG-2 TS
creats segmants

Walidity Expiration
event ta segment

Figure 43 Live workflow

10.11.8.1. Cue interpretation by the MPD generator:

When an SCTE 35 cue message indicating an upcoming splice point is encountered by the MPD generator, the
latter creates a new MPD for the same program, adding a remote period to it.

The Period@start attribute of the inserted period has splice_time() translated into the presentation timeline.
Parameters derived from the cue message are inserted into the Period@xlink:href attribute of the inserted period.
Examples below show architectures that allow finer targeting.

EXAMPLE 13
Immediate ad decision.

MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates
its template. At each MPD request, the generator customizes the request based on the information known to it
about the requesting client. The generator contacts ad decision server and produces one or more non-remote ad
periods. In this case XLink is not needed.

EXAMPLE 14
Stateful cue translation.

MPD generator keeps an up-to-date template of an MPD. At each cue message arrival, the generator updates
its template. At each MPD request, the generator customizes the request based on the information known to it
about the requesting client.

The operator targets separately male and female audiences. Hence, the generator derives this from the
information it has regarding the requesting client (see 5.1.3.6), and inserts an XLink URL with the query
parameter ?gender=male for male viewers, and ?gender=female for the female viewers.

Note that this example also showcases poor privacy practices — would such approach be implemented, both
parameter name and value should be encrypted or TLS-based communication should be used

EXAMPLE 15
Stateless cue translation.

At cue message arrival, the MPD generator extracts the entire SCTE 35 splice_info_section (starting at the
table_id and ending with the CRC_32) into a buffer. The buffer is then encoded into URL-safe base64url format
according to RFC 4648 [60], and inserted into the XLink URL of a new remote Period element. splice_time is
translated into Period@start attribute. The new MPD is pushed to the origin.

Note: this example is a straightforward port of the technique defined for SCTE 67 [55], but uses base64url
and not base64 encoding as the section is included in a URI.

10.11.8.2. Cue interpretation by the packager.

Cue interpretation by the packager is optional and is an optimization, rather than core functionality. On reception of
an SCTE 35 cue message signaling an upcoming splice, an emsg with MPD Validity Expiration event is inserted into

the first available segment. This event triggers an MPD update, and not an ad decision, hence the sum of the earliest
presentation time of the emsgbearing segment and the emsg.presentation_time_delta should be sufficiently earlier
than the splice time. This provides the client with sufficient time to both fetch the MPD and resolve XLink.

splice_time() of the cue message is translated into the media timeline, and last segment before the splice point is
identified. If needed, the packager can also finish the segment at the splice point and thus having a segment shorter
than its target duration.

10.11.8.3. Multiple cue messages

There is a practice of sending several SCTE 35 cue messages for the same splice point (e.g., the first message
announces a splice in 6 seconds, the second arrives 2 seconds later and warns about the same splice in 4 seconds,
etc.). Both the packager and the MPD generator react on the same first message (the 6-sec warning in the example
above), and do nothing about the following messages.

10.11.8.4. Cancelation

Itis possible that the upcoming (and announced) insertion will be canceled (e.g., ad break needed to be postponed
due to overtime). Cancelation is announced in a SCTE 35 cue message.

When cancelation is announced, the packager will insert the corresponding emsg event and the MPD generator will
create a newer version of the MPD that does not contain the inserted period or sets its duration to zero. This
implementation maintains a simpler less-coupled server side system at the price of an increase in traffic.

10.11.8.5. Early termination

It is also possible that a planned ad break will need to be cut short — e.g., an ad will be cut short and there will be a
switch to breaking news. The DASH translation of this would be creating an emsg at the packager and updating the
MPD appropriately. Treatment of early termination here would be same as treatment of a switch from main content to
an ad break.

It is easier to manipulate durations when Period@duration is absent and only Period@start is used — this way
attributes already known to the DASH client don’t change.

10.11.8.6. Informational cue messages

SCTE 35 can be used for purposes unrelated to signaling of placement opportunities. Examples of such use are

content identification and time-of-day signaling. Triggering MPD validity expiration and possibly XLink resolution in
this case may be an overreaction.

10.11.8.7. Ad decision

Dash Client MPD Generator Xlink Reschver Ad Decision Server

CON nede ‘

T
|
|
|
t
|

T T
| |
| |
| |

MFD : :

| | I

| | |

! - : | I

| GET(XLink URL) | |

: i

: : /: RequestAd(avail]
I—h

: : | Ad Decision |

| ! === 1

| Ad Pericd [Entity] |

== t-——————= -

GET(Ad Segment|

1
|

|
|
|
t
| Ad Segment
t
[
|

Figure 44 Ad decision

A client will attempt to dereference a remote period element by issuing an HTTP GET for the URL that appears in
Period@xlink:href. The HTTP server responding to this request (XLink resolver) will contact the ad decision service,
possibly passing it parameters known from the request URL and from client information available to it from the
connection context. In case described in 5.3.3.2.1.3, the XLink resolver has access to a complete SCTE 35
message that triggered the splice.

The ad decision service response identifies the content that needs to be presented, and given this information the
XLink resolver can generate one or more Period elements that would be then returned to the requesting DASH
client.

A possible optimization is that resolved periods are cached — e.g. in case of 5.3.3.2.1.1 "male" and "female"
versions of the content are only generated once in T seconds, with HTTP caching used to expire the cached periods
after T seconds.

10.11.9. On demand workflow

Ina VoD scenario, cue locations are known ahead of time. They may be available multiplexed into the mezzanine file
as SCTE 35 or SCTE 104, or may be provided via an out-of-band EDL.

In VoD workflows both cue locations and break durations are known, hence there is no need for a dynamic MPD.
Thus cue interpretation (which is same as in 5.3.3.2) can occur only once and result in a static MPD that contains all
remote elements with all Period elements having Period@start attribute present in the MPD.

In elastic workflows ad durations are unknown, thus despite our knowledge of cue locations within the main content it
is impossible to build a complete presentation timeline. Period@duration needs to be used. Remote periods should
be dereferenced only when needed for playout. In case of a “jump” — random access into an arbitrary point in the
asset —itis a better practice not to dereference Period elements when it is possible to determine the period from
which the playout starts using Period@duration and asset identifiers. The functionality described in 5.3.3.2 is
sufficient to address on-demand cases, with the only difference that a client should be able to handle zero-duration
periods that are a result of avails that are not taken.

10.11.9.1. Capture to VoD

Capture to VoD use case is a hybrid between pure linear and on demand scenarios: linear content is recorded as it
is broadcast, and is then accessible on demand. A typical requirement is to have the content available with the
original ad for some time, after which ads can be replaced.

There are two possible ways of implementing the capture-to-VoD workflow.

The simplest is treating capture-to-VoD content as plain VoD, and having the replacement policy implemented on
the XLink resolver side. This way the same Period element(s) will be always returned to the same requester within
the window where ad replacement is disallowed; while after this window the behavior will be same as for any on-
demand content. An alternative implementation is described in 5.3.3.5 below.

10.11.9.2. Slates and ad replacement

A content provider (e.g., OTT) provides content with ad breaks filled with its own ads. An ISP is allowed to replace
some of these with their own ads. Conceptually there is content with slates in place of ads, but all slates can be
shown and only some can be replaced.

An ad break with a slate can be implemented as a valid in-MPD Period element that also has XLink attributes. If a
slate is replaceable, XLink resolution will result in new Period element(s), if not — the slate is played out.

10.11.9.3. Blackouts and altemative content

In many cases broadcast content cannot be shown to a part of the audience due to contractual limitations (e.g.,
viewers located close to an MLB game will not be allowed to watch it, and will be shown some alternative content).
While unrelated to ad insertion per se, this use case can be solved using the same “default content” approach, where
the in-MPD content is the game and the alternative content will be returned by the XLink resolver if the latter
determines (in some unspecified way) that the requester is in the blackout zone.

10.11.9.4. Tracking and reporting

A Period, either local or a remote entity, may contain an EventStream element with an event containing IAB VAST
3.0 Ad element [53]. DASH client does not need to parse the information and act accordingly — if there is a listener to
events of this type, this listener can use the VAST 3.0 Ad element to implement reporting, tracking and companion
ads. The processing done by this listener does not have any influence on the DASH client, and same content would
be presented to both “vanilla” DASH client and the player in which a VAST module registers with a DASH client a
listener to the VAST 3.0 events. VAST 3.0 response can be carried in an Event element where
EventStream@schemeldUri value is http://dashif.org/identifiers/vast30.

An alternative implementation uses DASH Callback events to point to the same tracking URLs. While DASH
specification permits both inband and MPD Callback events, inband callback events shall not be used.

10.11.10. Examples’

EXAMPLE 16
MPD with mid-roll ad breaks and default content.

In this example, a movie (“Top Gun”) is shown on a linear channel and has two mid-roll ad breaks. Both breaks
have default content that will be played if the XLink resolver chooses not to return new Period element(s) or fails.

In case of the first ad break, SCTE 35 cue message is passed completely to the XLink resolver, together with the
corresponding presentation time.

In case of the second ad break, proprietary parameters u and z describe the main content and the publishing site.

<MPD xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="urn:mpeg:dash:schema:mpd:2011"
xsi:schemalLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd"
type="dynamic"
minimumUpdatePeriod="PT2S"
timeShiftBufferDepth="PT600S"
minBufferTime="PT2S"
profiles="urn:mpeg:dash:profile:isoff-live:2011"
availabilityStartTime="2012-12-25T15:17:50">
<BaseURL>http://cdnl.example.com/</BaseURL>
<BaseURL>http://cdn2.example.com/</BaseURL>

<Period start="PT0.00S" duration="PT600.6S" id="movie period #1">
<AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
value="md:cid:EIDR:10.5240%2f0OEFB-02CD-126E-8092-1E49-W"/>
<AdaptationSet mimeType="video/mp4" codecs="avcl.640828"
frameRate="24000/1001" segmentAlignment="true" startWithSAP="1">
<BaseURL>video_1/</BaseURL>
<SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
media="$Bandwidth$/$Number%05d$.mpav"/>
<Representation id="v@" width="320" height="240" bandwidth="250000"/>
<Representation id="v1" width="640" height="480" bandwidth="500000"/>
<Representation id="v2" width="960" height="720" bandwidth="1000000"/>
</AdaptationSet>
</Period>

<Period duration="PT60.6S" id="ad break #1"
xlink:href="https://adserv.com/avail.mpd?scte35-time=PT600.65& s
cte35-cue=DATAAAAAAAAAAAQAAZ_T0VniQAQAgBDVUVIQAAAAH+cAAAAAA%3D%3D"
xlink:actuate="onRequest" >

<AdaptationSet mimeType="video/mp4" codecs="avcl.640828"
frameRate="30000/1001"
segmentAlignment="true" startWithSAP="1">
<BaseURL availabilityTimeOffset="INF">default_ad/</BaseURL>
<SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
media="$Bandwidth%/$Time$.mpav" />

<Representation id="v@" width="320" height="240" bandwidth="250000"/>
<Representation id="v1" width="640" height="480" bandwidth="500000"/>
<Representation id="v2" width="960" height="720" bandwidth="1000000"/>

</AdaptationSet>

</Period>

<!-Movie, cont’d -->
<Period duration="PT600.6S" id="movie period #2">
<AssetIdentifier schemeIdUri="urn:org:dashif:asset-id:2013"
value="md:cid:EIDR:10.5240%2f0OEFB-02CD-126E-8092-1E49-W"/>

<AdaptationSet mimeType="video/mp4" codecs="avcl.640828"
frameRate="24000/1001"
segmentAlignment="true" startWithSAP="1">
<BaseURL>video_2/</BaseURL>
<SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
media="$Bandwidth%/$Time$.mpav" />

<Representation id="v@" width="320" height="240" bandwidth="250000"/>
<Representation id="v1" width="640" height="480" bandwidth="500000"/>
<Representation id="v2" width="960" height="720" bandwidth="1000000"/>

</AdaptationSet>

</Period>

<Period duration="PT60.6S" id="ad break #2"
xlink:href="https://adserv.com/avail.mpd?u=0EFB-02CD-126E-8092-1E49-W&z=spam”
xlink:actuate="onRequest" >

<AdaptationSet mimeType="video/mp4" codecs="avcl.640828"
frameRate="30000/1001"
segmentAlignment="true" startWithSAP="1">
<BaseURL availabilityTimeOffset="INF">default_ad2/</BaseURL>
<SegmentTemplate timescale="90000" initialization="$Bandwidth%/init.mp4v"
media="$Bandwidth%/$Time$.mpav" />

<Representation id="v@" width="320" height="240" bandwidth="250000"/>
<Representation id="v1" width="640" height="480" bandwidth="500000"/>
<Representation id="v2" width="960" height="720" bandwidth="1000000"/>

</AdaptationSet>

</Period>
</MPD>

10.11.11. Use of query parameters:

Parameters can be passed into the XLink resolver as a part of the XLink URL. Clause 5.3.3.2.1.3 shows an example
of this approach when an SCTE 35 cue message is embedded into the XLink URL.

This approach can be generalized and several parameters (i.e., name-value pairs) can be defined. SCTE 214-1
2016 [56] takes this approach and defines parameters expressing splice time (i.e., Period@start of the earliest ad
period), SCTE 35 cue message, and syscode (a geolocation identifier used in US cable industry). The first two
parameters are also shown in example in clause 5.3.4.1 of this document.

Note: Effectively this creates a RESTful APIfor XLink dereferencing. While discussion above implies that these
parameters are embedded by the MPD generator into the XLink URL, the parameter values may as well be
calculated by the client or the embedded values may be modified by the client.

Note: The same RESTful APl approach can be used with MPD URLs as well.

Note: More parameters may be defined in the future version of these guidelines.

10.12. App-based architecture?

Ad Management B
— SCTE 130 / VAST-
Module

App Ad Decision Server

Sagment Cues
MPDURLS +events

MPD . Contert
Generator Packager -

— DASH client

(main content)
Segments MPD Content +events
+ events

g MPD [content)

e

| R
DASH client (ads)
I R Origin

Figure 45 App-based architecture

Inputs in this use case are same as the ones described in sec. 5.3. At the packaging stage, cues are translated into
a format readable by the app or/and DASH client and are embedded into media segments or/and into the manifest.

Ad management module is located at the client side. The DASH client receives manifest and segments, with cues
embedded in either one of them or in both.

Cue data is passed to the ad management module, which contacts the ad decision service and receives information
on content to be played. This results in an MPD for an inserted content and a splice time at which presentation of
main content is paused and presentation of the inserted content starts.

Note that this architecture does not assume multiple decoders — with careful conditioning it is possible to do
traditional splicing where inserted content is passed to the same decoder. In this case itis necessary to keep a
player state and be able to initialize a player into this state.

10.12.1. Implementation basics

Each ad decision results in a separate MPD. A single MPD contains either main content or inserted content;
existence of multiple periods or/and remote periods is possible but not essential.

10.12.2. SCTE 35 events

Cue messages are mapped into DASH events, using inband emsg boxes and/or in-MPD events. Note that SCTE 35
cue message may not be sufficient by itself.

The examples below show use of SCTE 35 in user-defined events, and presentation time indicates the timing in
within the Period.

Figure 18 below shows the content of an emsg box at the beginning of a segment with earliest presentation time T.
There is a 6-sec warning of an upcoming splice — delta to splice time is indicated as 6 seconds — and duration is
given as 1 minute. This means that an ad will start playing attime T + 6 till T + 66. This example follows a practice
defined in SCTE 214-3 [57].

scheme id uri="urn:scte: scte35:2013:bin"

value=1001

timescale=80000

presentation time delta=540000

duration=5400000

id=0

0xFC 0x30 O0x08 Ox00 0x00 O0x00 0x00 Ox00 0x00 Ox00 Ox00 Ox10
0x00 0x06 O0x7F (%23 0x45 0x67 0x39 0x00 0x10 0x02 0x00 Ox43
0x55 0x45 0x49 0x40 0x00 O0x00 Ox00 0xTF 0xS8C 0x00 O0x00 Ox00

L)

g

Binary SCTE 35 cue message

Figure 46 Inband carriage of SCTE 35 cue messages

Figure 19 below shows the same example with an in-MPD SCTE35 cue message. The difference is in the in-MPD
event the splice time is relative to the Period start, rather than to the start of the event-carrying segment. This figure
shows a one-minute ad break 10 minutes into the period.

<EventStream schemeIdUri="urn:scte:scte35:2014:xml+bin">
<Event timescale="90000" presentationTime="54054000" duration="5400000" id="1">
<scte35:Signal>
<scte35:Binary>
/DATAAAAAAAAAAAQAAZ /IOVNniQAQAEgBDVUVIQAAAAH+CAAAAAA==
</scte35:Binary>
</scte35:Signal>
</Event>
</EventStream>

Figure 47 In-MPD carriage of SCTE 35 cue message

Note: for brevity purposes SCTE 35 2014 allows use of base64-encoded section in Signal.Binary element as an
alternative to carriage of a completely parsed cue message.

Normative definitions of carriage of SCTE 35 cue messages are in ANS/SCTE 214-1 [56] sec 6.8.4 (MPD) and
SCTE 214-3 [57] sec 8.3.3.

10.12.3. Asset identifiers

See sec. 5.3.2.2 for details.

10.12.4. Linear workflow

no

i
i Discard packet 1«
| Q

i

N ‘f’. N |
TS packet is new ™~ .| Update MPD with
PARE:2ITS /\ SCTE35? -~ yes ™ new remote period
S .
MPD Generator e

~ ~

|Buffer packetsand| g ror had SCTE 353 >— no—»| Write to origin
create segments s e

= i
\\]//
yes
Prepend MPD

Validity Expiration
event to segment !

Figure 48 Linear workflow for app-driven architecture

A real-time MPEG-2 TS feed arrives at a packager. While real-time multicast feeds are a very frequently
encountered case, the same workflow can apply to cases such as ad replacement in a pre-recorded content (e.g., in
time-shifting or PVR scenarios).

Packager creates DASH segments out of the arriving feed and writes them into the origin server. The packager
translates SCTE 35 cue messages into inband DASH events, which are inserted into media segments.

MPD generator is unaware of ad insertion functionality and the packager does the translation of SCTE 35 cue
messages into inband user-defined DASH events. On reception of an SCTE 35 cue message signaling an
upcoming splice, a emsg with a translation of the cue message inits emsg.message_data[] field is inserted into the
most recent Segment. This event triggers client interaction with an ad decision server, hence the sum of the earliest
presentation time of the emsg-bearing segment and the emsg.presentation_time_delta should be a translation of
splice_time() into the media timeline.

An alternative implementation which is more compatible with server-based architecture in section 5.3, an MPD
generator can generate separate MPDs for both server-based and app-based architectures creating remote
periods for server-based and in-MPD SCTE 35 events for app-based architectures, while a packager can insert
inband MPD validity expiration events.

A DASH client will pass the event to the app controlling it (e.g., via a callback registered by the app). The app will
interpret the event and communicate with the ad decision server using some interface (e.g., VAST). This interface is
out of the scope of this document.

The communication with ad decision service will resultin an MPD URL. An app will pause the presentation of the
main content and start presentation of the inserted content. After presenting the inserted content the client will
resume presentation of the main content. This assumes either proper conditioning of the main and inserted content
or existence of separate client and decoder for inserted content. The way pause/resume is implemented is internal to
the API of the DASH client. Interoperability may be achieved by using the DASH MPD fragment interface, see
ISO/IEC 23009-1 [4], Annex C .4

10.12.5. On demand workflow

As in the server-based case, functionality defined for the live case is sufficient. Moreover, the fact that that app-
based implementation relies heavily on app’s ability to pause and resume the DASH client, support for elastic
workflows is provided out of the box.

In the on demand case, as cue locations are well-known, it is advantageous to provide a static MPD with SCTE 35
events than run a dynamic service that relies on inband events.

10.13. Assetldentifier extensions

I ISSUE 30 'What are "extensions"? Move this to features/constraints chapters?

Assetldentifier descriptor shall be used for distinguishing parts of the same asset within a multi-period MPD, hence it
shall be used for main content and may be used for inserted content. In order to enable better tracking and reporting,

unique IDs should be used for different assets.

Use of EIDR and Ad-ID identification schemes is recommended. The value of @schemeldUri set to "urn:eidr"
signals use of EIDR. The value of @value attribute shall be a valid canonical EIDR entry as defined in [67].

Use of Ad-ID for asset identification is signaled by setting the value of @schemeldUri to
"urn:smpte:ul:060E2B34.01040101.01200900.00000000" ("designator" URN defined in SMPTE 2092-1 [68]). The
value of @value attribute shall be a canonical full Ad-ID identifier as defined in SMPTE 2092-1 [68].

Other schemes may be used, including user private schemes, by using appropriately unique values of
@schemeldUri.

In the absence of other asset identifier schemes, a DASH-IF defined scheme may be used with the value of
@schemeldUri set to "urn:org:dashif:asset-id:2014". If used, the value of @value attribute descriptor shall be a
MovieLabs ContentlD URN ([58], 2.2.1) for the content. It shall be the same for all parts of an asset. Preferred
schemes are EIDR (main content) and AdID (advertising).

lf a Period has one-off semantics (i.e., an asset is completely contained in a single period, and its continuation is not
expected in the future), the author shall not use asset identifier on these assets.

Periods that do not contain non-remote AdaptationSet elements, as well as zero-length periods shall not contain the
Assetldentifier descriptor.

10.14. Remote period extensions

An MPD may contain remote periods, some of which may have default content. Some of which are resolved into
multiple Period elements.

After dereferencing MPD may contain zero-length periods or/and remote Periods.

In case of Period@xlink:actuate="onRequest", MPD update and XLink resolution should be done sufficiently early to
ensure that there are no artefacts due to insufficient time given to download the inserted content.

Period@xlink:actuate="onRequest" shall not be used if MPD @type ="dynamic" 5

10.15. User-defined event extensions

10.15.1. Cue message

Cue messages used in app-driven architecture shall be SCTE 35 events [54]. SCTE 35 event carriage is defined in
ANSIVSCTE 214-1 (MPD) and ANSISCTE 214-3 (inband). For MPD events, the XML schema is defined in SCTE
35 2014 [54] and allows either XML representation or concise base64-coded representation.

NOTE: PTS offset appearing in SCTE 35 shall be ignored, and only DASH event timing mechanism may be used
to determine splice points.

10.15.2. Reporting

MPD events with embedded IAB VAST 3.0 [53] response may be used for reporting purposes.

If only time-based reporting is required (e.g., reporting at start, completion, and quartiles), use of DASH callback
event may be a simpler native way of implementing tracking. Callback events are defined in ISO/IEC 23009-1:2014
AMD3 [4].

10.15.3. Ad insertion event streams

Recommended Event Stream schemes along with their scheme identifier for app-driven ad insertion are:

1. "urn:scte:scte35:2013:bin" for inband SCTE 35 events containing a complete SCTE 35 section in binary form,
as defined in ANSISCTE 214-3.

2. “umn:scte:scte35:2014:xml+bin” for SCTE 35 MPD events containing only base64 cue message representation,
as defined in ANSISCTE 214-1. NOTE: the content of Event element is an XML representation of the complete
SCTE 35 cue message, that contains Signal.Binary element rather than the Signal.SplicelnfoSection element,
both defined in SCTE 35 2014.

3. "http://dashif.org/identifiers/vast30" for MPD events containing VAST3.0 responses [53].

4. urn:mpeg:dash:event:callback:2015 for DASH callback events.

11. Media coding technologies
This chapter describes the constraints that apply to media codecs when used in interoperable services.

Services SHALL use only the media codecs described in this chapter, in conformance with the requirements defined
here.

Clients MAY support any set of codecs described in this chapter and SHALL NOT attempt to play back
representations for which they do not have codec support.

11.1. H.264 (AVC)

The H.264 (AVC) codec [MPEGAVC] MAY be used by services for video adaptation sets. Clients SHOULD support
this codec.

For representations up to 1280x720p resolution and up to 30 fps, the H.264 (AVC) Progressive High Profile Level
3.1 decoder SHALL be used.

For representations up to 1920x1080p resolution and up to 30 fps, the H.264 (AVC) Progressive High Profile Level
4.0 decoder SHALL be used.

The encapsulation of H.264 data in DASH containers SHALL conform to [iso14496-15].

Clients SHALL support SPS/PPS storage both in the initialization segment (sample entry avc1) and inband storage
(sample entry avc3). Services MAY use either form.

Note: Use of avc3 is one of the factors that enables bitstream switching.

The below table lists examples of @codecs strings for H.264 (AVC) that match the decoders defined in this chapter.

Profile Level @codecs

avcl.64Y01F
avc3.64Y01F

3.1

H.264 (AVC) Progressive High Profile
avcl.64Y028

avc3.64Y028

4.0

Figure 49 Example @codecs strings for H.264 (AVC)
Note: Other @codecs strings may also be compatible (a higher level decoder can typically decode content
intended for a lower level decoder).

For a detailed description on how to derive the signaling for the codec profile for H.264/AVC, see [DVB-DASH
section 5.1.3.

11.2. H.265 (HEVC)

The H.265 (HEVC) codec [MPEGHEVC] MAY be used by services for video adaptation sets.

For representations up to 1280x720p at up to 30 fps, the HEVC Main Profile Main Tier Level 3.1 decoder SHALL be
used.

For representations up to 2048x1080 at up to 60 fps at 8-bit frame depth, the HEVC Main Profile Main Tier Level 4.1
decoder SHALL be used.

For representations up to 2048x1080 at up to 60 fps at 10-bit frame depth, the HEVC Main10 Profile Main Tier Level
4.1 decoder SHALL be used.

The encapsulation of H.265 data in DASH containers SHALL conform to [iso14496-15].

Clients SHALL support VPS/SPS/PPS storage both in the initialization segment (sample entry hvc1) and inband
storage (sample entry hev1). Services MAY use either form.

Note: Use of hev1 is one of the factors that enables bitstream switching.

I ISSUE 31 'Where does UHD fit? Why is it in a separate chapter? We should unify.

The [ISOBMFF] sync sample signaling and [MPEGDASH] SAP type signaling SHALL be derived from the following

table.
ISOBMFF] sync
NAL unit type [ISOBMFF] sy [MPEGDASH] SAP type
sample flag I —
IDR_N_LP true 1
2 (if the IRAP has associated RADL pictures)
IDPR_W_RADL t
- - ue 1 (if the IRAP has no associated RADL pictures)
BLA_N_LP true 1
2 (if the IRAP has associated RADL pictures)
BLA_W_RADL true) .)
- - 1 (if the IRAP has no associated RADL pictures)
false 3 (if the IRAP has associated RASL pictures)
2 (ifthe IRAP h iated RASL pict t h
BLA W LP rue (i ? as nc? associated RASL pictures but has
-~ associated RADL pictures
true 1 (if the IRAP has no associated leading pictures)
false 3 (if the IRAP has associated RASL pictures)
2 (if the IRAP has no associated RASL pictures but has
CRA true . .
associated RADL pictures)
true 1 (if the IRAP has no associated leading pictures)

Figure 50 Signaling dependent on HEVC IRAP pictures in [ISOBMFF] and [MPEGDASH].

IOP requires that each media segment start with SAP type 1 or 2. If the above table indicates SAP type
3, the content is not conforming to IOP.

When the table above lists multiple possible values for a given NAL unit type and the entity creating the signaling is
not able to determine correctly which values to use, it SHALL use the first value listed in the table for that NAL unit

type.

The below table lists examples of @codecs strings for H.265 (HEVC) that match the decoders defined in this chapter.

Profile Level @codecs
hev1.1.2.193.B0@
hvc1.1.2.L93.B0

HEVC Main
hev1.1.2.L123.B@
hvcl.12.1123.80

) hevl.2.4.L123.B0

HEVC Main-10

hvcl.2.4.L123.B0

Figure 51 Example @codecs strings for H.265 (HEVC)

Note: Other @codecs strings may also be compatible (a higher level decoder can typically decode content
intended for a lower level decoder).

For a detailed description on how to derive the signaling for the codec profile for H.265/HEVC, see [DVB-DASH

section5.2.2.

11.3. Decoder configuration with H.264 and H.265

This chapter applies only to video adaptation sets that use H.264 or H.265.

Allinitialization segments in the same video adaptation set SHALL use the same sample description (i.e. no mixing
of avcl and avc3 is allowed).

In representations using avcl or hvcl sample description:

e All decoding parameter sets referenced by NALs SHALL be indexed to that track’s sample description table
and decoder configuration record in the avcC or hvcC box contained inits initialization segment.

e Editlists MAY be present.
In representations using ave3 or hevl sample description:
e All decoding parameter sets referenced by NALs SHALL be indexed to a Sequence Parameter NAL (SPS) and
Picture Parameter NAL (PPS) stored prior to the first video sample in the same media segment.
e SPS and PPS stored in each media segment SHALL be used for decoding and display scaling.

e Every initialization segment SHALL include an avcC or hveC box that SHALL include SPS and PPS NALs that
equal the highest Tier, Profile, Level and vertical/horizontal sample count of any SPS in the representation.

o HEVC Decoder Configuration Records shall also include a VPS NAL.

e SPS and PPS stored in the initialization segments SHALL be used only for decoder and display initialization.

e Editlists MAY be present if using indexed addressing. Edit lists SHALL NOT be present when using any other
addressing mode.

11.4. Bitstream switching with H.264 and H.265

This chapter applies only to bitstream switching adaptation sets that use H.264 or H.265.

All representations SHALL be encoded using the avc3 or hevl sample description.

The first presented sample’s composition time SHALL equal the first decoded sample’s decode time, which equals
the baseMediaDecodeTime in the Track Fragment Decode Time Box (tfdt).

Note: This requires the use of negative composition offsets in a v1 Track Run Box (trun) for video samples,
otherwise video sample reordering will result in a delay of video relative to audio.

ISSUE 32 'What s the correct scoping for the above requirement? Is the composition time requirement specific
to H.264/H.265? Or does it apply to all bitstream switching video? Or does it apply to all bitstream switching, not
only video?

11.5. Thumbnail images

This chapter defines constraints for thumbnail adaptation sets.

Media segments SHALL be either JPEG or PNG images, using @mimeType of image/jpeg or image/png.

The adaptation set SHALL carry an essential property descriptor with
@schemeIdUri="http://dashif.org/guidelines/thumbnail_tile". The @value SHALL indicate the numer of
thumbnails in each media segment, with the syntax being Hxv, where:

e H is the number of horizontal tiles in the grid.

e V is the number of vertical tiles in the grid.

Descriptive attributes on the representation SHALL describe an entire grid of thumbnails (one media segment), not
an individual thumbnail.

Note: JPEG images have a maximum width and height of 64K pixels.

Thumbnails stored in one grid SHALL be evenly distributed in time across the time span covered by the media
segment on the MPD timeline, from left to right, then top to bottom.

EXAMPLE 17
Thumbnail presentation order for a 3x3 grid:

123
456
789

EXAMPLE 18

The following thumbnail adaptation set defines one media segment for every 125 seconds, containing a 25x1
image grid (25 columns, 1 row) with each image being 256x180 pixels. The display duration of each thumbnail
image is 5 seconds. The single thumbnail representation requires 10 Kbps of bandwidth on average.

<AdaptationSet mimeType="image/jpeg">
<SegmentTemplate media="thumbnails_$Number$.jpg" timescale="1" duration="125" />
<Representation bandwidth="10000" width="6400" height="180">
<EssentialProperty schemeIdUri="http://dashif.org/guidelines/thumbnail_tile" value="25x1"
/>
</Representation>
</AdaptationSet>

Parts of the MPD structure that are not relevant for this chapter have been omitted - this is not a fully functional
MPD file.

11.6. HE-AACV2 audio (stereo)

The codec for basic stereo audio support is MPEG-4 High Efficiency AAC V2 Profile, level 2 [MPEGAAC].
Note: HE-AACWV2 is also standardized as Enhanced aacPlus in 3GPP TS 26.401.

HE-AACV2 Profile decoder can also decode any content that conforms to:

o MPEG-4 AAC Profile
e MPEG-4 HE-AAC Profile

Therefore, services are free to use any AAC version. Typical clients are expected to play AAC-LC, HE-AAC and HE-
AACV2 encoded content.

For content with SBR, i.e. @codecs=mp4a.40.5 or @codecs=mp4a.40.29, @audioSamplingRate signals the resulting
sampling rate after SBR is applied, e.g. 48 kHz even if the AAC-LC core operates at 24 kHz.

For content with PS, i.e. @codecs=mp4a.40.29, the AudioChannelConfiguration element signals the resulting
channel configuration after PS is applied, e.g. stereo even if the AAC-LC core operates at mono.

The encapsulation of HE-AACV2 data in DASH containers SHALL conform to [MP4].

SAP type SHALL be 1. The @codecs string SHALL have a value from the below table.

Profile @codecs
MPEG-4 AAC Profile [11] mp4a.40.2
MPEG-4 HE-AAC Profile [11] mp4a.40.5
MPEG-4 HE-AAC V2 Profile [11] mp4a.40.29

Figure 52 Permitted HE-AACV2 @codecs values.

To conform to [DVB-DASH)], explicit backwards compatible signaling SHALL be used to indicate the use of the SBR
and PS coding tools for all HE-AAC and HE-AACV2 bitstreams.

ISSUE 33 'What does the above requirement actually mean - what does an implementation have to do?
Unclear right now.

11.7. HE-AACV2 audio (multichannel)

This chapter extends HE-AACV2 requirements with multichannel scenarios. All constraints defined for the stereo
scenario also apply here.

Support for multichannel content is available in the HE-AACV2 Profile, starting with level 4 for 5.1 and level 6 for 7.1.
Decoders implementing MPEG-4 HE-AACV2 multichannel profiles are fully compatible with content encoded in
conformance to HE-AACV2 stereo requirements defined in IOP.

The content SHOULD be prepared incorporating loudness and dynamic range information into the bitstream also
considering DRC Presentation Mode in [is014496-3-2009-amd4-2013].

Decoders SHALL support decoding of loudness and dynamic range related information, i.e. dynamic_range_info()
and MPEG4_ancillary_data() inthe bitstream.

11.8. CEA-608/708 Digital Television (DTV) Closed Captioning

This chapter defines requirements for interoperable use of CEA-608/708 Digital Television (DTV) Closed
Captioning [CEA708] in DASH presentations.

Note: This chapter is compatible with draft SCTE specification DVS 1208 and therefore SCTE URNs are used
for the descriptor @schemeIdUri.

CEA-608/708 captions SHALL be carried in SEl messages embedded in representations of a video adaptation set,
with the encapsulation as defined in [SCTE128-1], section 8.1. The SEl message payload_type=4 is used to
indicates that Rec. [TU-T T.35 based SEl messages are in use.

I ISSUE 34 '[TU-T T.35 referenced above seems unrelated to the topic. What is the correct reference?

ISSUE 35 Is the payload_type sentence meant to be a requirement or a description of the referenced spec or
what is the utility of this statement in IOP?

Every representation in the video adaptation set SHALL have identical CEA-608/708 captions. Both CEA-608 and
CEA-708 MAY be present simultaneously in the same video adaptation set.

The presence of CEA-608/708 captions SHALL be signaled by an Accessibility descriptor on the adaptation set
level, with @schemeIdUri="urn:scte:dash:cc:cea-608:2015" or @schemeIdUri="urn:scte:dash:cc:cea-
708:2015", with an optional @value.

When present for CEA-608 captions, the @value of this descriptor SHALL describe the caption streams and
languages in conformance to the ABNF below.

@value = (channel *3 [";" channel]) / (language *3[";" language])
channel = channel-number "=" language

channel-number = CC1 | CC2 | CC3 | cca

language = 3ALPHA ; language code per ISO 639.2/B [45]

Two variants of @value syntax for CEA-608 are described above - a variant with plain language codes and a variant
with caption channel numbers. Services SHOULD use the variant with channel numbers.

Note: IOP does not provide the @value syntax for CEA-708. See [SCTE214-1].

EXAMPLE 19
Signaling of presence of CEA-608 closed caption service in English and German

<Accessibility schemeIdUri="urn:scte:dash:cc:cea-608:2015" value="CCl=eng;CC3=deu"/>

11.9. Timed Text (IMSC1)
This chapter defines requirements for using IMSC1 text [61] in DASH presentations.

W3C TTML [itmI2] and its various profiles - W3C IMSC1 [ttml-imsc1.1] (text and image profiles), SMPTE Timed Text
[SMPTE2052-1-2013], and EBU Timed Text [EBU-TT] - provide a rich feature set for text tracks. Beyond basic

subtitles and closed captioning, for example, graphics-based subtitles and closed captioning are also supported by
IMSCH1.

Many clients only implement a subset of IMSC1. The exact feature sets used by clients and services
may need careful alignment to ensure mutual compatibility. Do not assume that all of IMSC1 is
supported by typical clients - this is unlikely.

Conversion of CEA-608 and CEA-708 into IMSC1 SHALL be done according to [SMPTE2052-10] and [SMPTE205
2-11], respectively.

One of the following storage formats SHALL be used for IMSC1 representations:

e [ISOBMFF] media segments.
e Stand-alone XML file (one file per representation).

The ISO BMFF encapsulated form SHOULD be used, as stand-alone XML file storage has significant limitations.
See also § 5.2.10 Timing of stand-alone IMSC1 and WebVTT text files.

Note: [DVB-DASH] only supports the ISO BMFF encapsulated form.

The signaling in the MPD SHALL conform to the below table.

Codec Storage @mimeType @codecs

IMSC1 Timed Text

[61] Stand-alone XML file application/ttml+xml

IMSC1 Timed Text encapsulation Registry [62]
application/mp4

[61] ISOBMFF

is014496-30][29]

Figure 53 IMSC1 signaling parameters.

11.10. Enhanced AC-3 (Dolby Digital Plus)
The @codecs parameter SHALL be ec-3. SAP type SHALL be 1.

The AudioChannelConfiguration element SHALL use
@schemeIdUri="tag:dolby.com,2014:dash:audio_channel configuration:2011" with @value as defined inthe
DASH-IF identifier registry.

Signaling and encapsulation SHALL conform to [ETSI102366] Annex F.

11.11. Dolby TrueHD
The @codecs parameter SHALL be mlpa. SAP type SHALL be 1.

Signaling and encapsulation SHALL conform to [Dolby-TrueHD].

11.12. AC4
The @codecs parameter SHALL be ac-4. SAP type SHALL be 1.

The AudioChannelConfiguration element SHALL use
@schemeIdUri="tag:dolby.com,2014:dash:audio_channel_configuration:2011" with @value as defined in the
DASH-IF identifier registry.

Signaling and encapsulation SHALL conform to [ETSI103190-1] Annex E.

11.13. DTS-HD

DTS-HD [ETSI102114] comprises a number of profiles optimized for specific applications. More information about
DTS-HD and the DTS-HD profiles can be found at https://dts.com/.

https://dashif.org/identifiers/audio_source_metadata/
https://dashif.org/identifiers/audio_source_metadata/

For all DTS formats SAP is always 1.

The signaling and encapsulation SHALL conform to [DTS9302J81100], [DTS9302K62400] and to the below table.

Codec @codecs
DTS Digital Surround dtsc
DTS-HD High Resolution and DTS-HD Master Audio dtsh
DTS Express dtse
DTS-HD Lossless (no core) dtsl

Figure 54 DTS @codecs values

11.14. MPEG Surround

MPEG Surround [is023003-1] is a scheme for coding multichannel signals based on a down-mixed signal of the
original multichannel signal, and associated spatial parameters. The down-mix SHALL be coded with MPEG-4 High
Efficiency AAC v2.

MPEG Surround used in DASH SHALL comply with level 4 of the Baseline MPEG Surround profile.

SAP type SHALL be 1. @codecs SHALL be mp4a.40.30.

11.15. MPEG-H 3D Audio

MPEG-H 3D Audio [is023008-3] encoded content SHALL comply with Level 1, 2 or 3 of the MPEG-H Low
Complexity (LC) Profile.

In addition to the requirements in [is023008-3], the following constraints SHALL apply to storage of raw MPEG-H
audio frames in DASH containers:

e One audio ISO BMFF sample shall consist of a single mpegh3daFrame() structure, as defined in [is023008-3
clause 20.5.

e The parameters carried in the MHADecoderConfigurationRecord() shall be consistent with the configuration of
the audio bitstream. In particular, the mpegh3daProfileLevelIndication shall be setto exeB, exec, or exab for
MPEG-H Audio LC Profile Level 1, Level 2, or Level 3, respectively.

e The referenceChannellayout field carried in the MHADecoderConfigurationRecord()shall be equivalent to
what is signaled by ChannelConfiguration according to [is023001-8].

e Each media segment SHALL start with a SAP of type 1 (e.g. a sync sample). MPEG-H Audio sync samples
contain Immediate Playout Frames (IPFs), as specified in [is023008-3] clause 20.2. For such frames, the raw
MPEG-H audio frames shall contain the AudioPreRoll() syntax element, as defined in sub-clause 5.5.6 of [iso2
3008-3], and shall follow the requirements for stream access points as defined in clause 5.7 of [is023008-3].
The AudioPreRoll() syntax element carried in the IPFs shall contain a valid configuration structure
(AudioPreRoll.Config())and should contain one pre-roll frame (AudioPreRoll.numPreRollFrames = 1).

Note: The mpegh3daConfig() structure is expected to be different for each representation in an adaptation set.

SAP type shall be 1.

ISO BMFF encapsulation SHALL conform to [is023008-3].

Codec @codecs

MPEG-H 3D audio LC profile level 1 mhm1.0x0B
MPEG-H 3D audio LC profile level 2 mhm1 . 0x0C
MPEG-H 3D audio LC profile level 3 mhm1.0xeD

Figure 55 Permitted @codecs values

11.16. MPEG-D Unified Speech and Audio Coding

MPEG-D Unified Speech and Audio Coding (USAC) has been designed to provide consistently high audio quality
with a variety of content that comprises a mixture of audio and speech signals. Using such a codec ina DASH
streaming environment enables adaptive switching capability from 12 kbps stereo up to transparency.

[is023000-19-2018-amd2-2019] defines a media profile xHE-AAC for MPEG-D USAC that is suitable for streaming
applications.

Usage of USAC in DASH presentations SHALL conform to [is023000-19-2018-amd2-2019], providing support up
to 5.1 multichannel coding.

SAP type SHALL be 1. @codecs SHALL be mp4a.40.42.

11.17. UHD HEVC 4K

For the support of broad set of use cases the DASH-IF IOP HEVC 4k Extension is defined. UHD HEVC 4k video
encoded with H.265/HEVC is an advanced distribution format for TV services that enables higher resolution
experiences in an efficient manner.

This extension describes requirements for content at 4k resolutions up to 60fps, and defines the required codec
support as HEVC Main 10 Level 5.1.

The conformance to DASH-IF IOP HEVC 4k may be signaled by a @profile attribute with the value
http://dashif.org/guidelines/dash-if-und#hevc-4k.

NAL Structured Video streams conforming to this Media Profile SHALL NOT exceed the following coded picture
format constraints:

e Maximum encoded horizontal sample count of 3840 samples
* Maximum encoded vertical sample count of 2160 samples

¢ Maximum frame rate of 60000 / 1000.

ISSUE 36 'There is a bunch of stuff below with no obvious connection to UHD. Should this not also be in the
non-UHD HEVC chapter?

Additional coded picture format constraints:

e Representations in one adaptation set SHALL only differ by the following parameters: bitrate, spatial resolution,
frame rate.

e The condition of the following SHALL NOT change throughout one HEVC video track:

o aspect_ratio_idc

o cpb_cnt_minus1l

© bit_rate_scale

© bit_rate_value_minusl
© cpb_size_scale

© cpb_size_value_minusl

[]

The following fields SHALL NOT change throughout an HEVC elementary stream.

© pic_width_in_luma_samples

o pic_height_in_luma_samples

(]

YCcbCr SHALL be used as the chroma format and 4:2:e for color sub-sampling.

(]

The bit depth of the content SHALL be either 8 bit or 10 bit.
The color primaries SHALL be [ITU-R-BT.709].

L]

The bitstream SHALL comply with the Main10 Tier Main Profile Level 5.1 restrictions as specified in [MPEGHEVC].

UHD HEVC 4k bitstreams SHALL set vui_parameters_present_flag to 1 in the active Sequence Parameter Set,
i.e. HEVC bitstreams shall contain a Video Usability Information syntax structure.

The sample aspect ratio information shall be signaled in the bitstream using the aspect_ratio_idc value in the
Video Usability Information (see [MPEGHEVC] table E1). UHD HEVC 4k bitstreams SHALL represent square
pixels. Therefore, aspect_ratio_idc SHALL be setto 1.

The following restrictions SHALL apply for the fields in the sequence parameter set:

® vui_parameters_present_flag = 1
® sps_extension_flag = @
® fixed_pic_rate_general_flag = 1

® general_interlaced_source_flag = @

The following restrictions SHALL apply for the fields in the profile_tier_level syntax structure in the sequence
parameter set:

® general_tier_flag = @
® general_profile_idc = 2

UHD HEVC 4k bitstreams shall obey the limits in [MPEGHEVC] table A.1 and table A.2 associated to Level 5.1.
general_level_idc shall be less than or equal to 153 (level 5.1).

Bitstreams which are compliant with the Main or Main10 profile SHOULD set
general_profile_compatibility flag[1] to 1.

The chromaticity coordinates of the ideal display, opto-electronic transfer characteristic of the source picture and
matrix coefficients used in deriving luminance and chrominance signals from the red, green and blue primaries
SHALL be explicitly signaled in the encoded HEVC Bitstream by setting the appropriate values for each of the
following 3 parameters in the VUL colour_primaries,transfer_characteristics, and matrix_coeffs.

ITU-R-BT.709] colorimetry usage SHALL be signaled by setting colour_primaries to the value 1,
transfer_characteristics to the value 1 and matrix_coeffs to the value 1.

The bitstream MAY contain SEl messages as permitted by [MPEGHEVC] and described in[MPEGHEVC] Annex D.

The @codecs parameter SHALL be set to either "hvc1.2.4.L153.B0" or "hev1.2.4.L153.B0" and SHALL NOT exceed
the capabilities described by these values.

Bitstreams conforming to this chapter MAY contain one or more sets of optional dynamic metadata. The presence of
dynamic metadata is signalled by a supplemental property descriptor with
@schemeIdUri="http://dashif.org/metadata/hdr" and @value from the following table:

Scheme @value

ETSITS 103.433 SEl messages TS103433

Figure 56 HEVC HDR dynamic metadata schemes.

11.17.1. TS 103.433 HDR dynamic metadata

This chapter applies to video adaptation sets that carry a supplemental property descriptor with
@schemeIdUri="http://dashif.org/metadata/hdr" and @value="TS103433".

The bitstream SHALL contain one or more SL-HDR Information SEI messages, as defined in clause A.2.2 of [ETSI
03433-1], and MAY contain one or more Mastering Display Colour Volume SEI messages, as defined inMPEGHE

VC.

The SL-HDR Information SEl message SHALL be present at least with every SAP type 1 or type 2.

When carried, the Mastering Display Colour Volume SEl message SHALL be present at least with every SAP type 1
or type 2 and SHALL be used as specified in clause A.3 of [ETSI103433-1].

11.17.2. HEVC UHD compatibility aspects

This specification is designed such that UHD content that is authored in conformance to IOP is expected to conform
to the media profile defined by [DVB-DASH)] and following the 3GPP H.265/HEVC UHD Operation Point in section
5.6 of [3GPP26.116]. However, in contrast to DVB and 3GPP, only BT.709 may be used and not BT.2020.

In addition, clients conforming to this extension are expected to be capable of playing content authored as conform to
the media profile defined by [DVB-DASH] and following the 3GPP H.265/HEVC UHD Operation Point in section 5.6
of [3GPP26.116], if BT.709 colour space is used.

11.18. HEVC HDR PQ10

For the support of broad set of use cases addressing higher dynamic range (HDR) and wide colour gamut (WCG),
the DASH-IF IOP HEVC HDR Perceptual Quantization (PQ) 10 Extension is defined. This interoperability point
allows for additional UHD features including Wide Color Gamut, High Dynamic Range and a new electro-optical
transfer curve. These features are in addition to the existing features described in the DASH-IF UHD 4k
interoperability point, except that that this profile is designed for HDR, and requires the use of SMPTE ST 2084 [71]
and Rec. BT-2020 [74] colour space. Note that this is identical to Rec. BT-2100 [80], PQ transfer function, YC'BC'R
color difference formats, with 10 bit signal representation and narrow range.

Note that this Extension does not require the use of the maximum values, such as 60fps or 4K resolution. The content
author may offer lower spatial and temporal resolutions and may use the regular DASH signalling to indicate the
actual format of the source and rendering format. Typical cases may be to use HDR together with an HD 1080p
signal. Note also that Adaptation Set Switching as defined in section 3.8 may be used to separate different spatial
resolutions in different Adaptation Sets to address different capabilities, but still permit the use of lower resolutions
for service continuity of higher resolutions.

The compliance to DASH-IF IOP HEVC HDR PQ10 may be signaled by a @profile attribute with the value
http://dashif.org/guidelines/dash-if-und#hevc-hdr-pq10.

The same requirements as for UHD HEVC 4k as documented in section 10.2 hold, expect for the changes as
detailed below.

The changes in the HEVC HDR PQ10 profile that extend it beyond the HEVC 4K profile include:

e NAL Structured Video Streams conforming to this interoperability point SHALL be encoded using the REC-
2020 color parameters as defined in [74]. Clients shall be able to correctly decode content that is encoded
using that color space.

e NAL Structured Video Streams conforming to this interoperability point SHALL be encoded using the SMPTE
ST 2084 electro-optic transfer function as defined in [71]. Clients shall be able to correctly decode content that is
encoded using that electro-optic transfer function. Note that one cannot author a single piece of content that is
compliant with both this profile and HEVC 4k profile. However, the content may be offered in one MPD in two
different Adaptation Sets.

Optional metadata may be present in form SEl messages defined in [TU-T H.265 /ISO/IEC 230082:2015 [19].

A bitstream conforming to the HEVC HDR PQ10 media profile shall comply with the Main Tier Main10 Profile Level
5.1 restrictions, as specified in Recommendation ITU-T H.265 / ISO/IEC 23008-2 [19].

In addition the requirements in section 10.2.2.2 apply, except that this profile requires the use of Recommendation
[TU-R BT.2020 [74] non-constant luminance colorimetry and SMPTE ST 2084 [71].

SMPTE ST 2084 [71] usage shall be signaled by setting colour_primaries to the value 9, transfer_characteristics to
the value 16 and matrix_coeffs to the value 9.

The bitstream may contain SEI messages as permitted by the Recommendation ITU-T H.265 / ISO/IEC 23008-
2:2015 [19]. Details on these SEl messages are specified in Recommendation ITU-T H.265 / ISO/IEC 23008-2 /
Annex D. SEl message may for example support adaptation of the decoded video signals to different display
capabilities or more detailed content description, in particular those specified in Recommendation [TU-T H.265 /
ISO/IEC 23008-2 / Annex D in relation to HDR. Other SEl Messages defined in [TU-T H.265 / ISO/IEC 23008-2 /
Annex D may be present as well.

Receivers conforming to the HEVC HDR PQ10 media profile shall support decoding and displaying HEVC HDR
PQ10 bitstreams as defined in section 10.3.2.2.

No additional processing requirements are defined, for example processing of SEl messages is out of scope.

If all Representations in an Adaptation Set conforms to the elementary stream constraints for the Media Profile as
defined in clause 10.3.3.2 and the Adaptation Set conforms to the MPD signalling according to clause 10.3.3.2 and
10.3.3.4, and the Representations conform to the file format constraints in clause 10.3.3.3, then the @profiles
parameter in the Adaptation Set may signal conformance to this operation point by using
"http://dashif.org/guidelines/dashif-uhd#hevc-hdr-pg10".

The MPD shall conform to DASH-IF HEVC Main IOP as defined with the additional constraints defined in clause
10.3.3.4. The @codecs parameter shall not exceed and should be set to either "hvc1.2.4.L153.B0" or
"hev1.2.4.L.153.B0".

Content authored according to this extensions is expected to be interoperable with the HDR10 profile defined in the
DECE CFF Content Specification v2.2 [78], although it should be noted that the DECE CFF profile may have
additional constraints, such as bitrate restrictions and required metadata.

Content authored according to this extensions is expected to be interoperable with the PQ10 package defined in the
UHD Forum Guidelines phase A [79].

11.18.1. HEVC PQ10 HDR dynamic metadata

Bitstreams conforming to the HEVC HDR PQ10 media profile may contain one or more sets of optional dynamic
metadata. Details of the various metadata schemes are detailed below.

The presence of dynamic metadata is signalled by a Supplemental Descriptor with @schemeldUri set to
"http://dashif.org/metadata/hdr", the @value set to once of the values in the following table:

Scheme @value
SMPTE 2094-10 SEI messages SMPTE2094-10
SMPTE 2094-40 SEl messages SMPTE2094-40
TS 103.433 SEl messages TS103433

Figure 57 HEVC HDR PQ10 dynamic metadata schemes

11.18.2. SMPTE 2094-10 HDR dynamic metadata

When the Adaptation Set contains a Supplemental Descriptor with @schemeldUri set to
"http://dashif.org/metadata/hdr" and @value set to "SMPTE2094-10", then the bitstream shall contain SMPTE 2094-
10 [83] metadata, provided as a Supplemental Enhancement Information (SEI) message containing a DM_data()
message (as defined in SMPTE 2094-10 [83] Annex C- Display Management Message) in accordance with “User
data registered by Recommendation [TU-T T.35 SEl message” syntax element.

In addition to the Bitstream Requirements defined above in Section 10.3.2.2, when ST2094-40 dynamic metadata is
carried, exactly one ST 2094-10 SEI message shall be sent for every access unit of the bitstream.

11.18.3. SMPTE 2094-40 HDR dynamic metadata

When the Adaptation Set contains a Supplemental Descriptor with @schemeldUri set to
"http://dashif.org/metadata/hdr" and @value set to "SMPTE2094-40", then the bitstream shall contain SMPTE ST
2094-40 [89] metadata, provided as a Supplemental Enhancement Information (SEI) message (as defined in
CTAB861-G [90]) in accordance with “User data registered by Recommendation I[TU-T T.35 SEl message” syntax
element.

This SEl message provides information to enable colour volume transformation of the reconstructed colour samples
of the output pictures. The input to the indicated colour volume transform process is the linearized RGB colour
components of the source content. The semantics and usage of the dynamic metadata shall be in conformance with
the specifications in SMPTE ST 2094-40 [89].

In addition to the Bitstream Requirements defined above in clause 10.3.2.2, when ST2094-40 dynamic metadata is
carried, exactly one ST 2094-40 SEI message shall be present with every SAP of type 1 or type 2.

11.19. UHD Dual-Stream (Dolby Vision)

[DolbyVision-ISOBMFF]

Note: This This extension is designed to be compatible with the “Dolby Vision Media Profile Definition” in DECE
“Common File Format & Media Formats Specification” Version 2.2. The name of the DASH-IF extension is
inherited from the DECE document in order to indicate the compatibility with this DECE Media Profile.

For the support of broad set of backward compatible use cases the DASH-IF IOP Dual-Stream (Dolby Vision)
Interoperability Point is defined. Backward Compatible refers to a simple method for one delivery format to satisfy
both an HDR client and an SDR client. This Interoperability Point allows for two interlocked video streams, as
described in the clause 10.4.2 below (restrictions to Enhancement Layers and Annex D 1.1). These two layers are
known as the Base and Enhancement layers, where the Base Layer fully conforms to previous non-UHD or UHD

DASHIF Interoperability point. The EL provides additional information, which combined with the BL in a composition
process produces a UHD output signal, including Wide Color Gamut and High Dynamic Range signal at the client.

The compliance to DASH-IF IOP Dual-Stream (Dolby Vision) may be signaled by a @profile attribute on the
Enhancement Layer with the value http://dashif.org/guidelines/dash-if-uhd#dvduallayer

The dual-stream solution includes two video streams, known as the Base Layer and the Enhancement Layer. The
high-level overview of the dual-stream process is shown in Figure 26 Overview of Dual-stream System.

| Base Layer
MPD (HEVC decoder) Combinatio
n Operation .
Display
(ETSI 1eplay
Enhancement Layer CCM)

| (HEVC decoder)

Figure 58 Overview of dual-stream system.

The MPD includes at least two Adaptation Sets as described below, including a Base Layer Adaptation Set and an
Enhancement Layer Adaptation Set.

The Base Layer shall conform to the requirements of one of the following Interoperability Points: the DASH-IF IOP
Main Interoperability Point, the DASH-IF IOP UHD 4k Interoperability point or the DASH-IF IOP UHD HDR10
Interoperability point. Any client that is able to play DASHIF IOP Main content, DASH-IF IOP UHD 4k content, or
DASH-IF IOP UHD HDR10 content as appropriate will be able to play the content from the Base Layer track as
determined by the client capabilities. To be clear, the Base Layer is 100% conforming, with no changes or additional
information, to the profile definition. A client that plays content conforming to the Base Layer profile will be able to
play the Base Layer content with no modification and no knowledge of the Enhancement Layer or and Dolby Vision
specific information. See Annex E, Sample MPD, for an example dual-layer MPD.

In addition, The Enhancement Layer shall conform to H.265/HEVC Main10 Profile Main Tier as defined in
Recommendation ITU-T H.265 / ISO/IEC 23008-2, Level 5.1 or lower The Enhancement Layer shall conform to the
following additional requirements:

e The Frame Rate is identical to the Base Layer video track.

e The EL DPB (Decoded Picture Buffer) shall support the same number of maximum frames as the maximum
number of frames supported by the BL’s DPB.

¢ [fthe Base layer sample contains an IDR picture, the Enhancement Layer sample must have an IDR picture at
the same presentation time.

e Fragment durations and Presentation times are identical to the Base Layer video track. To clarify, “Presentation
times are identical” means that for each picture at one layer, there shall be a picture at the other layer with the
same presentation time.

e Each Enhancement Layer track has one and only one associated Base Layer video track (i.e. tracks are paired
1:1).

The client - may either play the Base Layer alone, in which case it complies with the requirements of those
interoperability points, or the client plays the Base Layer and Enhancement Layer together, decoding both layers and
combining them to produce a 12 bit enhanced HDR signal which conforms to REC.2020 color parameters and
SMPTE-2084 electro-optical transfer function. The details of this combination operation are detailed in ETSI
Specification “Compound Content Management” [85].

Content shall only be authored claiming conformance to this IOP if a client can properly play the content through the
method of combining the Base Layer and Enhancement layers to produce an enhanced HDR output. Note that
clients who conform to the profile associated with the Base Layer alone may play the Base Layer alone, with no
information (and no knowledge) of the Enhancement Layer. In addition, the content shall follow the mandatory
aspects and should take into account the recommendations and guidelines for content authoring documented in
sections 8 and 10and HEVC-related issues in this section.

The dual-stream delivery of Dolby Vision asset uses two tracks; the Base Layer is written into one track according to
the profile of the Base Layer, and the Enhancement Layer exists in a second track, per the [TBD Reference on
integration, 12] specification and the details in Annex C and Annex D. In particular, details about required mp4
Boxes and sample entries are detailed in Annex C, “Dolby Vision Streams Within the ISO Base Media File Format”
The Enhancement Layer is identified by an additional parameter, @dependencyld, which identifies the Base layer
which is the match for the Enhancement Layer as described in clause 10.4.2.3.

If all Representations in an Adaptation Set conforms to the elementary stream constraints for the Media Profile as
defined in clause 10.4.2.1 and the Adaptation Set conforms to the MPD signaling according to clause 10.4.3.2 and
10.4.3.3, and the Representations conform to the file format constraints in clause 10.4.3.4, then the @profiles
parameter in the Adaptation Set may signal conformance to this operation point by using
“http://dashif.org/guidelines/dash-ifuhd#dvduallayer on the Enhancement Layer (the Base Layer uses the normal
signaling of the layer as defined in the profile of the Base Layer).

The MPD shall conform to DASH-IF HEVC Main IOP as defined with the additional constraints defined in clause
104.2.

When the Dual-Stream Dolby Vision asset is delivered as two files, the Enhancement Layer is identified by an
additional parameter, @dependencyld, which identifies the Base Layer that is the match for the Enhancement Layer.
The Base Layer Representation element must have an @id attribute, and the @dependencyld attribute on the
Enhancement Layer Representation shall refer to that @id, to indicate to a client that these two representations are
linked. Note that in this case, the @codecs attribute for the Base Layer will have only the Base Layer codec. In this
example, the Base Layer @codecs might be: codecs="hvc1.1.0.1L120.00" And the Enhancement Layer @codecs
would be: codecs="dvhe.dtr.uhd30" For both the Base Layer and the Enhacncement Layer, HEVC decoders are
used in accordance with the @codecs signaling on each layer. The syntax and semantics of the @codecs signaling
on the enhancement layer is detailed in Annex D. The output of the decoders are combined by the method detailed in
ETSI Specification “Compound Content Management” [85].

Content shall only be authored claiming conformance to this IOP if a client can properly play the content. In addition,
the content shall follow the mandatory aspects and should take into account the recommendations and guidelines for
content authoring documented in clause 8 and 10 and HEVC-related issues in clause 6.2.

11.19.1. Requirements for enhancement layer

The sample aspect ratio information shall be signaled in the bitstream using the aspect_ratio_idc value in the Video
Usability Information (see values of aspect ratio_idc in Recommendation [TU-T H.265 / ISO/IEC 23008-2:2013 [19],
table E1).

In addition to the provisions set forth in Recommendation ITU-T H.265 / ISO/IEC 23008-2:2013 [19], the following
restrictions shall apply for the fields in the sequence parameter set:

e bit_depth_luma_minus8 shall be set to “2”.
e aspect _ratio_idc shall be setto “1”.

e general_interlaced_source_flag shall be setto “0”.

In addition to the requirements imposed in clause 10.4.2.2, the following additional specifications shall apply to the
Enhancement Layer encoding: HEVC Enhancement Layer Bitstreams shall contain the following SEI messages:

e User data registered by Recommendation [TU-T T.35 SEI message containing the message CM_data()
(named composing metadata SEl message), as described in clause 10.4.2.3.3.

e User data registered by Recommendation [TU-T T.35 SEl message containing the message DM_data()
(named display management SEl Message), as described in clause 10.4.2.3.4.

e Mastering display colour volume SEI message as specified in Recommendation ITU-T H.265 / ISO/IEC 23008-
2 Annex D with the following constraints: o A valid number shall be set for the following syntax elements:
display_primaries_x[c], display_primaries_y]c], white_point_x, white_point_y,
max_display_mastering_luminance and min_display_mastering_luminance.

CM_data() messages and DM_data() messages are carried in the enhancement layer video elementary stream as
Supplemental Enhancement Information in HEVC's “User data registered by Recommendation ITU-T T.35 SEI
message” syntactic element. The syntax of the composing metadata SEI message and the display management SEI
message is defined in Table 31.

Field Type Usage

user_data_registered_itu_t_t35(payloadSize) {
itu_t t35_country_code b(8) This 8-bit field shall have the value 0xB5.
itu_t t35_provider_code u(16) This 16-bit field shall have the value 0x0031.
user_identifier u(32) This 32-bit code shall have the value 0x47413934 ("GA94").

An 8-bit value that indentifies the type of user data to follow in the

user_data_type_code u(8)]
user_data_type_structure(). The values are defined in Table 32.

This is a variable length set of data defined by the value of
user_data_type_structure() user_data_type_code and table C.1 (DM_data()) or table D.1
(CM_data()).

Figure 59 Compound Content Management SEI message: HEVC (prefix SEI NAL unit with nal_unit_type = 39, payloadType=4)

user_data_type_code user_data_type_structure()
0x00 to 0x07 Reserved

0x08 CM_data()

0x09 DM_data()

0x0A to OXFF Reserved

Figure 60 User identifier

The composing metadata SEl message is a “user data registered by Recommendation ITU-T T.35 SEl message”
containing a CM_data() message, as specified in Annex F. HEVC Enhancement Layer Bitstreams shall contain
composing metadata SEI messages with the following constraints:

¢ [t shall be sent for every access unit of the HEVC Enhancement Layer Bitstream.

e Bitstreams shall conform to ETSI Profile 1 as defined in Annex A of [85] and the value of the syntax element
ccm_profile shall be set to “1”.

e The value of the syntax element ccm_level shall be set to “0”.

e The value of BL_bit_depth_minus8 shall be set to “2”.

e The value of EL_bit_depth_minus8 shall be set to to “2”.

e The value of the syntax element hdr_bit_depth_minus8 shall be set to “2” or “4”.
The display management SEl message is a “user data registered by Recommendation [TU-T T.35 SEI message”
containing a DM_data() message, as specified in Annex C. HEVC Enhancement Layer Bitstreams shall contain
display management SEI messages with the following constraints:

e It shall be sent for every access unit of the HEVC Enhancement Layer Bitstream.

e app_identifier shall be set equal to “1”.

e app_version shall be set equal to “1”.

e The number of extension blocks with ext_block_level equal to “1” shall be constrained to be equal to “1”.

e The number of extension blocks with ext_block_level equal to “2” shall be constrained to be less than or equal to
“16”.

e The number of extension blocks with ext_block_level equal to “5” shall be constrained to be equal to “0” or “1”.

11.20. VP9

VP9 [86] is an alternative video codec is which may be used for SD, HD, and UHD spatial resolutions, as well as
HDR10 and HDR12 bit depths (HDR + WCG); and frame rates of 24fps and higher. This codec provides significant
bandwidth savings at equivalent qualities with respect to AVC/H.264. While not meant to replace AVC and HEVC,
DASH presentations may include additional VP9 representations for playback on clients which support it.

For the integration in the context of DASH, the following applies for VP9:

(]

The encapsulation of VP9 video data in ISO BMFF is defined in the VP Codec ISOBMFF Binding specification
[87]. Clients shall support both sample entries containing vpe9 and vpcC boxes, i.e. inband storage for
VPCodecConfigurationBox + VPCodecConfigurationRecord.

For delivery to consumer devices, only VP9 profile 0 (4:2:0 chroma subsampling and 8bit pixel depth), and
profile 1 (4.2.0 chroma subsampling and 10- or 12-bit pixel depths) shall be used.

Stream Access Points shall coincide with the beginning of key frames (uncompressed header field frame_type
=0) as defined in the VP9 Bitstream Specification [86] section 7.2. Only type-1 SAPs are supported.
Fragmentation and segmentation shall occur only at these points.

Codec and codec configuration signaling in the MPD shall occur using the codec string defined in the VP
Codec Binding Specification [87], DASH Application section.

Encryption shall be signaled by the same mechanisms as defined in Common Encryption for ISO-BMFF
Containers 3rd edition. Subsample encryption is required as per the VP Codec ISO Media File Format Binding
spec [87].

For VP9 video streams, if the @bitstreamSwitching flag is set to true, then the following additional constraints shall
apply:

L]

L]

Edit lists shall not be used to synchronize video to audio and presentation timelines.

Video Media Segments shall set the first presented sample’s composition time equal to the first decoded
sample’s decode time, which equals the baseMediaDecodeTime in the Track Fragment Decode Time Box
(‘tfdt’).

o This requires the use of negative composition offsets in a v1 Track Run Box (‘trun’) for video samples,
otherwise video sample reordering will result in a delay of video relative to audio.

The @presentationTimeOffset attribute shall be sufficient to align audio, video, subtitle, and presentation
timelines at presentation a Period’s presentation start time. Any edit lists present in Initialization Segments shall
be ignored. It is strongly recommended that the Presentation Time Offset at the start of each Period coincide
with the first frame of a Segment to improve decoding continuity at the start of Periods.

All representations within the Adaptation set shall have the same picture aspect ratio.

All VP9 decoders are required to support dynamic video resolutions, however pixel bitdepths may not vary
within an adaptation set. Because of this the encoding Profile must remain constant, but the Level may vary.

All Representations within a video Adaptation Set shall include an Initialization Segment containing an ‘vpcC’
Box containing a Decoder Configuration Record with the highest, , Level, vertical and horizontal resolutions of
any Media Segment in the Representation.

The AdaptationSet@codecs attribute shall be present and contain the maximum level of any Representation
contained in the Adaptation Set.

The Representation@codecs attribute may be present and in that case shall contain the maximum level of any
Segment in the Representation.

The scope of the DASH-IF VP9-HD extension interoperability point is basic support of highquality video distribution
over the top based on VP9 up to 1080p with 8-bit pixel depth and up to 30fps. Both, live and on-demand services
are supported.

The compliance to DASH-VP9 main may be signaled by a @profiles attribute with the value
"http://dashif.org/guidelines/dashiffvp9"

11.20.1. HD

A DASH client conforms to this extension IOP by supporting at least the following features:

(]

All DASH-related features as defined in clause 3 of this document.
The requirements and guidelines in section 4.9.2 for simple live operation.
The requirements and guidelines in section 5.6.1 for server-based ad insertion.

Content protection based on common encryption and key rotation as defined in section 7. And specifically, the
client supports MPD-based parsing parameters for common encryption.

All VP9 DASH IF IOP requirements in clause 11.2.
VP9 Profile 0 up to level 4.1.

11.20.2. UHD

The scope of the DASH-IF VP9-UHD extension interoperability point is basic support of highquality video distribution
over the top based on VP9 up to 2160p with 8-bit pixel depth and up to 60fps. Both, live and on-demand services
are supported. The compliance to DASH-VP9 main may be signaled by a @profiles attribute with the value
"http://dashif.org/guidelines/dash-if-und#vp9"

A DASH client conforms to this extension IOP by supporting at least the following features:

e All features supported by DASH-IF VP9-HD defined in clause 11.3.1.
e VP9 Profile 0 up to level 5.1.

11.20.3. HDR

The scope of the DASH-IF VP9-HDR extension interoperability point is basic support of highquality video distribution
over the top based on VP9 up to 2160p with 10-bit pixel depth and up to 60fps. Both, live and on-demand services
are supported.

The compliance to DASH-VP9 main may be signaled by a @profiles attribute with the value
http://dashif.org/guidelines/dashif#vp9-hdr (up to HD/1080p resolution), or http://dashif.org/guidelines/dash-if-
uhd#vp9-hdr (up to 4K resolution).

A DASH client conforms to this extension IOP by supporting at least the following features:

e Allfeatures supported by DASH-IF VP9-UHD defined in clauses 11.3.2.
e VP9 profile 2 up to level 5.1.
e Pixel depths of 10 bits.

12. Content protection and security

12.1. Introduction

DASH-IF do not intend to specify a full end-to-end DRM system. However DASH-IF provides a framework allowing
multiple DRM systems to protect DASH content by adding private information in predetermined locations in MPDs
and DASH content that is encrypted with Common Encryption as defined in [MPEGCENC].

Common Encryption specifies several protection schemes and associated parameters. These can be applied by a
scrambling system and used by key mapping methods part of different DRM systems, thanks to common key
identifiers (KID and default_KID). The same encrypted version of DASH content can be combined with different
DRM systems private information allowing licenses and keys retrieval (Protection System Specific Header Box pssh
in the ISOBMFF file and ContentProtection elements in the MPD. The DRM systems are identified by specific
DRM systemID.

The recommendations in this document constrain the encryption parameters and use of the encryption metadata to
specific use cases for VOD and live content with key rotation.

12.2. HTTPS and DASH

Transport security in HTTP-based delivery may be achieved by using HTTP over TLS (HTTPS) as specified in [RFC
8446). HTTPS is a protocol for secure communication which is widely used on the Internet and also increasingly
used for content streaming, mainly for protectiing:

e The privacy of the exchanged data from eavesdropping by providing encryption of bidirectional communications
between a client and a server, and

e The integrity of the exchanged data against forgery and tampering.

As an MPD carries links to media resources, web browsers follow the W3C recommendation [mixed-content]. To
ensure that HTTPS benefits are maintained once the MPD is delivered, it is recommended that if the MPD is
delivered with HTTPS, then the media also be delivered with HTTPS.

DASH also explicitly permits the use of HTTPS as a URI scheme and hence, HTTP over TLS as a transport protocol.
When using HTTPS in an MPD, one can for instance specify that all media segments are delivered over HTTPS, by
declaring that all the BaseURL's are HTTPS based, as follow:

<BaseURL>https://cdnl.example.com/</BaseURL>
<BaseURL>https://cdn2.example.com/</BaseURL>

One can also use HTTPS for retrieving other types of data carried with a MPD that are HTTP-URL based, such as,
for example, DRM licenses specified within the ContentProtection element:

<ContentProtection
schemeIdUri="urn:uuid : XXXXXXXX=XXXX=XXXX=XXXX~XXXXXXXXXXXX"
value="DRMNAME version"
<drm:License>https://MoviesSP.example.com/protect?license=kljklsdfiowek</drm:License>
</ContentProtection>

It is recommended that HTTPS be adopted for delivering DASH content. It should be noted nevertheless, that HTTPS
does interfere with proxies that attempt to intercept, cache and/or modify content between the client and the TLS
termination point within the CDN. Since the HTTPS traffic is opaque to these intermediate nodes, they can lose
much of their intended functionality when faced with HTTPS traffic.

While using HTTPS in DASH provides good protection for data exchanged between DASH servers and clients,
HTTPS only protects the transport link, but does not by itself provide an enforcement mechanism for access control
and usage policies on the streamed content. HTTPS itself does not imply user authentication and content
authorization (or access control). This is especially the case that HTTPS provides no protection to any streamed
content cached in a local buffer at a client for playback. HTTPS does not replace a DRM.

12.3. Content Encryption

DASH content SHALL be encrypted with either the cenc or the cbcs Common Encryption protection schemes. Full
specification of these protection schemes is givenin [MPEGCENC] sections 10.1 and 10.4 respectively.

Note: These are two non-interoperable encryption modes. DASH content encrypted with the cenc protection
scheme cannot be decrypted by a device supporting only the cbcs protection scheme and vice versa.

DASH content associated to Representations contained in one Adaptation Set SHALL be encrypted with the same
protection scheme, either cenc or cbcs.

Note: This is to facilitate seamless switching within Adaptation Sets, out of concern that some clients may not be
able to switch between Representations seamlessly if the Representations are not all encrypted using the same
algorithm.

DASH content represented by an MPD MAY be encrypted with different protection schemes in different Adaptation
Sets. There MAY be unencrypted Period, hence clear to encrypted transitions and the opposite are possible.

Note: It is up to the client to select Adaptation Sets that it is able to process in each Period based on the MPD
and the client’s capabilities. A client may select Adaptation Sets that are all encrypted using the same protection
scheme but this is not mandatory.

ISSUE 37 'Clients in browsers must assume what the CDM support as there is no standardized API for probing
the platform for knowning which Common Encryption proteciton scheme is supported. A bug is open on W3C
EME and a pull request exists here for the ISOBMFF file format bytestream and a proposal is open for probing
the platform on the encryption mode supported.

12.4. ISOBMFF Support for Common Encryption and DRM

12.4.1. ISOBMFF Structure Overview

ISOBMFF carries content protection information in different locations. The following shows the boxes hierarchy and
composition for relevant boxes, when using common encryption:

e moov/pssh (zero or one per DRM system)
Protection System Specific Header box, see [MPEGCENC] section 8.1.1.

It contains license acquisition data and/or keys for each DRM system in a format that is proprietary. pssh boxes
may be stored in Initialization Segment in the Movie Header box moov or in Media Segments in the Movie
Fragment box moof.

https://github.com/w3c/encrypted-media/pull/392

Fo

=

moof/traf/senc (one if encrypted)
Sample Encryption box, see [MPEGCENC] section 7.1.

It may store initialization vectors (IVs) and subsample encryption ranges. It is stored in each Track Fragment box
of an encrypted track, and the stored parameters are accessed using the Sample Auxiliary Information Offset
box (saio) and the Sample Auxiliary Information Size box (saiz).

moof/traf/saio (one if encrypted)
Sample Auxiliary Information Offset box, see [MPEG4] section 8.7.9.

It contains the offset to the Vs and of the subsample encryption byte ranges.

moof/traf/saiz (one if encrypted)
Sample Auxiliary Information Size box, see [MPEG4] section 8.7.8.

It contains the size of the IVs and of the subsample encryption byte ranges.

moov/trak/mdia/minf/stbl/stsd/sinf/schm (one if encrypted)
Scheme Type box, see [MPEG4] section 8.12.5 and [MPEGCENC] section 4.

It contains the encryption scheme, identified by a 4-character code, cenc or cbcs. ltis stored in the Protection
Scheme Information box (sinf see [MPEG4] section 8.12.1 and [MPEGCENC] section 4) that signals that the
track is encrypted.

moov/trak/mdia/minf/stbl/stsd/sinf/schi/tenc (one if encrypted)
Track Encryption box, see [MPEGCENC] section 8.2.1.

It specifies encryption parameters and a KID named default_KID valid for the entire track. It is in the
Initialization Segment. Any KID in Sample Group Description boxes (sgpd) override the tenc parameters
(default_KID as well as default_isProtected).

key rotation (see section § 12.8.1 Periodic Re-Authorization), these additional boxes are used:

moof/pssh (zero or one per DRM system)
Protection System Specific Header box, see [MPEGCENC] section 8.1.1.

It contains license acquisition data and/or keys for each DRM system in a format that is proprietary. pssh boxes
may be stored in Initialization Segment in the Movie Header box moov or in Media Segments in the Movie
Fragment box moof.

moof/traf/sbgp (one per sample group)

Sample to Group box, see [MPEG4] and [MPEGCENC] section 5.

With sgpd of type seig itis used to indicate the KID applied to each sample and allow changing KID over time
(i.e. “key rotation”, see [MPEGDASH] section 8.9.4). The keys corresponding to the KIDs referenced by sample
groups must be available when the samples in a Segment are ready for decryption. Those keys may be
conveyed in that Segment in pssh boxes. A version 1 pssh box may be used to list all KIDs values to enable
removal of duplicate boxes if a file is defragmented.

moof/traf/sgpd ‘seig’(sample group entry) (one per sample group)
Sample Group Description box, see [MPEG4] section 8.9.3 and [MPEGCENC].

When of type seig,itis used to indicate the KID applied to each sample and allow changing KID over time (i.e.
“key rotation”, see [MPEGDASH] section 8.9.4).

12.4.2. ISOBMFF Content Protection Constraints

There SHALL be identical values of default_KID in the Track Encryption box (tenc) of all DASH content in
Representation referenced by one Adaptation Set, when the Adpatation Set is protected by encryption. Different
Adaptation Sets MAY have equal or different values of default_KID.

Note: In cases where, for example, SD and HD and UHD content in Representations are available in one
Presentation, different license rights may be required for each quality level. In such case, separate Adaptation
Sets should be created for each quality level, each with a different value of default_KID.

ISSUE 38 'In this context, it is possible that the several quality levels are available under the same license right.
Add text explaining why a shall is the way to do.

pssh boxes SHOULD NOT be present in Initialization Segments, and cenc:pssh elements in ContentProtection
elements SHOULD be used instead. If pssh boxes are present in the Initialization Segment, each Initialization
Segment within one Adaptation Set SHALL contain an equivalent pssh box for each DRM systemiD, i.e. license
acquisition from any Representation is sufficient to allow switching between Representations within the Adaptation
Set without acquiring a new license.

Note: pssh boxes in Initialization Segments may result in playback failure when a license request is initiated each
time an Initialization Segment is processed, such as the start of each protected Representation, each track
selection, and each bitrate switch. This content requires DASH clients that can parse the pssh box contents to
determine the duplicate license requests and block them.

ISSUE 39 This seems like an unlikely problem in real client implementations. Do we know of clients that actualy
exhibit the problematic behavior? Look at EME and define if this is still a problem. Take advantage of the
meeting in May with W3C

Note: The duplication of the pssh information in the Initialization Segment may cause difficulties in playback with
EME based clients, i.e. content will fail unless clients build complex DRM specific license handling.

12.5. DASH MPD Support for Common Encryption and DRM

12.5.1. MPD Structure Overview

The main DRM components in the MPD are the ContentProtection element (see MPEGDASH] section 5.3.7.2 -
table 9, section 5.8.5.2 and section 5.8.4.1) that contains the URI for signaling the use of Common Encryption or the
use of a specific DRM and the cenc: namespace extension ((MPEGCENC] section 11.2). The MPD contains such
information to help the client to determine if it can possibly play back content.

12.5.1.1. contentprotection Element for the mp4aprotection Scheme

A ContentProtection element with the @schemeIduri value "urn:mpeg:dash:mp4protection:2011" signals that
content is encrypted with the scheme indicated in the @value, either cenc or cbcs for the Common Encryption
schemes supported by this guidelines, as specified in [MPEGCENC]. It may be used to identify the KID values using
the @cenc:default_KID attribute (see § 12.5.1.3 cenc: Namespace Extension), also present in the ‘tenc’ box. The
values of this attribute are the KIDs expressed in UUID string notation.

This element may be sufficient to acquire a license or identify a previously acquired license that can be used to
decrypt the Adaptation Set. It may also be sufficient to identify encrypted content in the MPD when combined with
license acquisition information stored in pssh boxes in Initialization Segments.

<ContentProtection
schemeIdUri="urn:mpeg:dash:mp4protection:2011"
value="cenc"
cenc:default_KID="34e5db32-8625-47cd-ba06-68fcav655a72"/>

12.5.1.2. contentpProtection Element for the UUID Scheme

A ContentProtection element with the @schemeIduri value equal to a UUID value signals that content keys can be
obtained through a DRM system identified by the UUID. The @schemeIduri uses a UUID URN with the UUID string
equal to the registered DRM systemID for a particular DRM system. This is specified in [MPEG4] section 5.8.5.2. An
example is:

<ContentProtection
schemeIdUri="urn:uuid : XXXXXXXX=-XXXX=XXXX=XXXX~XXXXXXXXXXXX "
value="DRMNAME version"/>

12.5.1.3. cenc: Namespace Extension

MPEGCENC] section 11.2 defines the namespace "urnimpeg:cenc:2013", for which the usual namespace prefix is

cenc.

A pssh boxis defined by each DRM system for use with their registered DRM systemID, and the same box can be
stored in the MPD within a ContentProtection element using an extension elementin the cenc: namespace.
Examples are provided in MPEGCENC] section 11.2. A @cenc:default_KID can also be stored under the
ContentProtection element using the same cenc: namespace.

Carrying @cenc:default_KID attribute and a cenc:pssh element is useful to allow key identification, license
evaluation, and license retrieval before Initialization Segments carrying the same information become available. This
allows clients to spread license requests and avoid simultaneous requests from all clients at the instant that an
Initialization Segment containing the default_KID values becomes available. With @cenc:default_KID indicated in
the mpaprotection ContentProtection element on each Adaptation Set, clients can determine if the required
content key is available, or which licenses the client needs to obtained before the @availabilityStartTime of the
Presentation based on the default_KID of each AdaptationSet element selected.

Carrying @cenc:default_KID attribute and a cenc:pssh element is useful to allow key identification, license
evaluation, and license retrieval before live availability of Initialization Segments. This allows clients to spread license
requests and avoid simultaneous requests from all viewers at the instant that an Initialization Segments containing
the default_KID values becomes available. With @cenc:default_KID indicated in the mp4protection
ContentProtection element on each Adaptation Set, clients can determine if that key and this Presentation is not
available to the viewer (e.g. without a purchase or a subscription), if the key is already downloaded, or which licenses
the client SHOULD download before the @availabilityStartTime of the Presentation based on the default_KID of
each AdaptationSet element selected.

12.5.2. MPD Content Protections Constraints

For an encrypted Adaptation Set, At least one ContentProtection element SHALL be presentin the AdaptationSet
element and apply to all contained Representations.

A ContentProtection element for the mp4Protection Scheme (@schemeIduri equals to
"urn:mpeg:dash:mp4protection:2011" and @value=cenc or cbcs) SHALL be present in the AdaptationSet element if
DASH content represented by the contained Representations are encrypted. This allows clients to recognize the
Adaptation Set is encrypted with a Common Encryption scheme without the need to understand any DRM system
specific UUID element. This ContentProtection element SHALL contain the attribute @cenc:default_KID. The tenc
box that specifies the encoded track encryption parameters shall be considered the definitive source of the default
KID since it contains the default_KID field. The @cenc:default_KID attribute SHALL match the tenc default_KID
value. This allows general-purpose clients to identify the default kIb from the MPD using a standard location and
format without the need to understand any DRM system specific information format.

The cenc:pssh element SHOULD be present in the ContentProtection element for each DRM system identified by
a DRM system encoded as a UUID. The base64 encoded contents of the element SHALL be equivalent to a pssh
box including its header. The information in the pssh box SHOULD be sufficient for license acquisition.

Note: A client such as DASH.js hosted by a browser may pass the contents of this element through the Encrypted
Media Extension (EME) APl to the DRM system Content Decryption Module (CDM) with a DRM systemID equal
to the element’'s UUID value. This allows clients to acquire a license using only information in the MPD, prior to
downloading Segments.

The @value attribute of the ContentProtection element for UUID Scheme SHOULD contain the DRM system name
and version number in a human readable form.

Below is an example of the recommended format for a hypothetical acme DRM service

<ContentProtection
schemeIdUri="urn:uuid:d@ee2730-09b5-459f-8452-200e52b37567”
value="acme DRM 2.0”>
<cenc:pssh>
YmFzZTYQIGVuUY29kZWQgY29udGVudHMgb2YgkXBzc2iSIGIveCB3aXRoIHRoaXMgU31zdGVtSUQ=
</cenc:pssh>
</ContentProtection>

12.6. Mix ISOBMFF and MPD Content Protections Constraints

For a DRM system uniquely identified by its DRM systemID, in the case where the cenc:pssh element is presentin

the MPD and the pssh boxis present in the Initialization Segment, the cenc:pssh element in the MPD SHALL take
precedence because the parameters in the MPD will be processed first, are easier to update, and can be assumed
to be up to date at the time the MPD is fetched.

The DRM systems allowing to access to protected DASH content are signaled in the MPD and possibly also in the
ISOBMFF file. In both cases, the DRM system is uniquely identified with a DRM systemID. A list of known identifiers
can be found in the DASH identifier repository.

If the default KID changes (this requires a new content key acquistion) and therefore the @cenc:default_KID value
needs to be updated, it SHALL be at the beginning of a Period. A different Initialization Segment is then indicated
with a different default_KID signaled in the tenc box.

Note: A file associated with a single content key may be continued over multiple Periods by being referenced by
multiple Representations over multiple Periods (for instance, a program interspersed with ad Periods). A client
can recognize the same @cenc:default_KID value and avoid requesting the same license again; butitis
possible that some the DRM systems may require a complete erase and rebuild of the security context, including
all key material, samples in process, etc., between Periods with different licenses or no license (between
protected and clear Periods).

12.7. Client Interactions with DRM Systems

A client interacts with one or more DRM systems during playback in order to control the decryption of content. The
interaction is made through a DRM client that is responsible of enabling connection to a DRM server. Some of the
most important interactions are:

e Determining the availability of content keys.

e Communicating with the DRM system to acquire content keys, most of the time through a license request.

In these interactions, the client and DRM system use the default_KID values as a mechanism to communicate
information regarding the capability to decrypt DASH content described by Adaptation Sets. A DRM system MAY
also make use of other keys in addition to the one signalled by the default_KID value (e.g. in key derivation or
sample variant schemes) but this SHALL be transparent to the client.

When starting playback of Adaptation Sets, a client SHALL determine the required set of content keys based on the
default_KID values.

Upon determining that one or more required content keys are not in its possession, the client SHOULD interact with
the DRM system and request them. The client MAY also request content keys that are known to be usable. Clients
SHALL request all required content keys signaled by the default_KID values. The client and/or DRM system MAY
batch multiple requests (and the respective responses) into a single transaction (for example to reduce the
chattiness of license acquisition traffic).

For efficient license delivery, itis recommended that clients:

e Request content keys on the initial processing of an MPD or ISOBMFF if ContentProtection elements or
Initialization Segments are available with license acquisition information. This is intended to avoid a large
number of simultaneous license requests at MPD@availabilityStartTime.

e Prefetch licenses for a new Period in advance of its presentation time to allow license download and processing
time and prevent interruption of continuous decryption and playback. Advanced requests will also help prevent a
large number of simultaneous license requests during a live presentation at Period@startTime.

12.8. Additional Constraints for Specific Use Cases

12.8.1. Periodic Re-Authorization

This section explains different options and tradeoffs to enable change in content keys (a.k.a. key rotation) on a given
piece of content.

Note: The main motivation is to enable access rights changes at program boundaries, not as a measure to
increase security of content encryption. The term Periodic re-authorization is therefore used here instead of key
rotation. Note that periodic re-authorization is also one of the ways to implement counting of active streams as
this triggers a connection to a license server.

The following use cases are considered:

e Consumption models such as live content, PPV, PVR, VOD, SVOD, live to VOD, network DVR. This includes

https://dashif.org/identifiers/content_protection/

cases where live content is converted into another consumption model for e.g. catch up TV.
e Regional blackout where client location may be taken into account to deny access to content in a geographical
area.

The following requirements are considered:

e Ability to force a client to re-authorize to verify that it is still authorized for content consumption.

e Support seamless and uninterrupted playback when content keys are rotated by preventing storms of license
requests from clients (these should be spread out temporally where possible to prevent spiking loads at isolated
times), by allowing quick recovery (the system should be resilient if the server or many clients fail), and by
providing to the clients visibility into the key rotation signaling.

e Support of hybrid broadcast/unicast networks in which client may operate in broadcast-only mode at least some
of the time, e.g. where clients may not always be able to download licenses on demand through unicast.

This also should not require changes to DASH and the standard processing and validity of MPDs.

12.8.1.1. Periodic Re-Authorization Content Protections Constraints

Key rotation SHOULD not occur within individual segments. It is usually not necessary to rotate keys within individual
segments. This is because segment durations are typically short in live streaming services (on the order of a few
seconds), meaning that a segment boundary is usually never too far from the point where key rotation is otherwise
desired to take effect.

When key hierarchy is used (see § 12.8.1.2 Implementation Options)

e Each Movie Fragment box (moof) box SHOULD contain one pssh box per DRM system. This pssh box SHALL
contains sufficient information for obtaining content keys for this fragment when combined with information, for
this DRM system, from either the pssh box obtained from the Initialization Segment or the cenc:pssh element
from the MPD and the KID value associated with each sample from the seig Sample Group Description box
and sbgp Sample to Group box that lists all the samples that use a given KID value.

e Constraints defined in § 12.4.2 ISOBMFF Content Protection Constraints SHALL apply to the EMM/root license
(one license is needed per Adaptation Set for each DRM system).

I ISSUE 40 To be reviewed in light of CMAF and segment/chunk and low latency.

12.8.1.2. Implementation Options

This section describes recommended approaches for periodic re-authorization. They best cover the use cases and
allow interoperable implementation.

Note: Other approaches are possible and may be considered by individual implementers. An example is explicit
signaling using e.g. esmg messages, and a custom key rotation signal to indicate future KIDs.

Period: A Period element is used as the minimum content key duration interval. Content key is rotated at the period
boundary. This is a simple implementation and has limitations in the flexibility:

e The existing signaling in the MPD does not allow for early warning of change of the content key and associated
decryption context, hence seamless transition between periods is not ensured.

e The logic for the creation of the periods is decided by content creation not DRM systems, hence boundaries
may not be suited properly and periods may be longer than the desired key interval.

Key Hierarchy: Each DRM system has its own key hierarchy. In general, the number of levels in the key hierarchy
varies among DRM systems. For interoperability purposes, only two levels need to be considered:

e |icenses for managing the rights of a user: This can be issued once for enforcing some scope of accessing
content, such as a channel or library of shows (existing and future). It is cryptographically bound to one DRM
system and is associated with one user ID. It enables access to licenses that control the content keys
associated with each show it authorizes. There are many names for this type of licenses. In conditional access
systems, a data construct of this type is called an entittement management message (EMM). In the PlayReady
DRM system, a license of this type is called a “root license”. There is no agreement on a common terminology.

e Licenses for accessing the content: This is a license that contains content keys and can only be accessed by
devices that have been authorized. While licenses for managing rights are most of the time unique per user, the
licenses for accessing the content are not expected to be unique and are tied to the content and not a user,

therefore these may be delivered with content in a broadcast distribution. In addition doing so allows real time
license acquisition, and do not require repeating client authentication, authorization, and rebuilding the security
context with each content key change in order to enable continuous playback without interruption cause be key
acquisition or license processing. In conditional access systems, a data construct of this type is called an
entitlement control message (ECM). In the PlayReady DRM system, a license of this type is called a “leaf
license”. There is no agreement on a common terminology.

When using key hierarchy, the @cenc:default_KID value inthe ContentProtection element, whichis also in the
tenc box, is the ID of the key requested by the DRM client. These keys are delivered as part of acquisition of the
rights for a user. The use of key hierarchy is optional and DRM system specific.

ISSUE 41 'For key hierarchy, add a sentence explaining that mixing DRM systems is possible with system
constraints.

12.8.2. Low Latency

Low latency content delivery requires that all components of the end-to-end systems are optimized for reaching that
goal. DRM systems and the mechanisms used for granting access also need to be used in specific manners to
minimize the impact on the latency. DRM systems are involved in the access to content in several manners:

e Device initialization
e Device authorization

e Content access granting

Each of these steps can have from an impact on latency ranging from low to high. The following describes possible
optimizations for minimizing the latency.

12.8.2.1. Licenses Pre-Delivery.

In a standard playback session, a client, after receiving the DASH MPD, checks the @cenc:default_KID value
(either part of the mp4protection element or part of a DRM system element). If the client already has a content key
associated to this KID value, it can safely assume that it is able to get access to content. If it does not have such
content key, then a license request is triggered. This process is done every time a MPD is received (change of
Period, change of Live service, notification of MPD change ...). It would therefore be better that the client always has
all keys associated to @cenc:default_KID values. One mechanism is license pre-delivery. Predelivery can be
performed in different occasions:

e When launching the application, the client needs to perform some initialization and refresh of data, it therefore
connects to many servers for getting updated information. The license server SHOULD allow the client to
receive licenses for accessing content the client is entitled to. Typically, for subscription services, all licenses for
all Live services SHOULD be delivered during this initialization step. It is the DRM system client responsibility to
properly store the received information.

e The DRM system SHOULD have a notification mechanism allowing to trigger a client or a set of clients to out-of-
band initiate licenses request, so that it is possible to perform license updates in advance. This typically allows
pre-delivery of licenses when a change will occur at a Period boundary and, in this case, this also allow
avoiding all clients connecting at almost the same time to the license server if not triggered in advance
randomly.

* In case a device needs nevertheless to retrieve a license, the DRM system MAY also batch responses into a
single transaction allowing to provide additional licenses (as explained in Section § 12.7 Client Interactions with
DRM Systems) that can be used in the future.

12.8.2.2. Key Hierarchy and CMAF Chunked Content

When a DRM system uses key hierarchy for protecting content, it adds DRM information in both possibly the
Initialization Segment and in the content (in the moof box). The information in the moof box can allow the DRM client
to know which root key to use decrypt the leaf license or to identify the already decrypted content key from a local
protected storage. Most of the processing and logic is DRM system-specific and involves DRM system defined
encryption and signaling. it may also include additional steps such as evaluating leaf license usage rules. Key
hierarchy is one technique for enabling key rotation and it is not required to rotate content key at high frequency,
typically broadcast TV has content key cryptoperiods of 10 seconds to few minutes.

CMAF chunked Content introduces moof boxes at a high frequency as it appears within segments and not only at the

beginning of a segment. One can therefore expect to have several moof boxes every second. Adding signaling
SHOULD be done only in the moof box of the first chunk in a segment.

ISSUE 42 To be completed. Look at encryption: Key available for license server “early” for been able to
generate licenses (root or leaf licenses). Avoid the license server been on the critical path. Encourage license
persistence in the client.

12.8.3. Use of W3C Clear Key with DASH

When using W3C Clear Key key system with DASH [encrypted-media], Clear Key related signaling is included in the
MPD with a ContentProtection element that has the following format.

The Clear Key ContentProtection element attributes SHALL take the following values:

e The UUID e2719d58-a985-b3c9-781a-b030af78d30e is used for the @schemeIduri attribute.

e The @value attribute is equal to the string “ClearKey1.0”

W3C also specifies the use of the DRM systemID="1077efec-cOb2-4d02-ace3-3c1e52e2fb4b” in [eme-initdata-cen
c] section 4 to indicate that tracks are encrypted with Common Encryption [MPEGCENC], and list the KID of content
keys used to encrypt the track in a version 1 pssh box with that DRM systemID. However, the presence of this
Common pssh box does not indicate whether content keys are managed by DRM systems or Clear Key
management specified in this section. Browsers are expected to provide decryption in the case where Clear Key
management is used, and a DRM system where a DRM key management system is used. Therefore, clients SHALL
NOT rely on the signalling of DRM systemID 1077efec-cOb2-4d02-ace3-3c1e52e2fb4b as an indication that the
Clear Key mechanism is to be used.

W3C specifies that in order to activate the Clear Key mechanism, the client must provide Clear Key initialization
data to the browser. The Clear Key initialization data consists of a listing of the default KIDs required to decrypt the
content.

The MPD SHOULD NOT contain Clear Key initialization data. Instead, clients SHALL construct Clear Key
initialization data at runtime, based on the default KIDs signaled in the MPD using ContentProtection elements with
the urn:mpeg:dash:mp4protection:2011 scheme.

When requesting a Clear Key license to the license server, it is recommended to use a secure connection as
described in Section § 12.2 HTTPS and DASH.

It should be noted that clients receiving content keys through the Clear Key key system may not have the same
robustness that typical DRM clients are required to have. When the same content keys are distributed to DRM clients
and to weakly-protected or unprotected clients, the weakly-protected or unprotected clients become a weak link in
the system and limits the security of the overall system.

12.8.4. License Acquisition URL XML Element Laurl

One or more Laurl elements MAY be added under the ContentProtection element. This element specifies the URL
for a license server allowing to receive a license. It has the optional attribute @licenseType that is a string that
provides additional information that is DRM-specific.

The name space for the Laurl elementis http://dashif.org/guidelines/ContentProtection The namespace
shortname is recommended to be "dashif:".

The XML schema for this element is:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://dashif.org/guidelines/ContentProtection”
targetNamespace="http://dashif.org/guidelines/ContentProtection">
<xs:element name="Laurl" type="LaurlType"/>
<xs:complexType name="LaurlType">
<xs:simpleContent>
<xs:extension base="xs:anyURI">
<xs:attribute name="licenseType" type="xs:string"/>
<xs:anyAttribute namespace="##other" processContents="1lax"/>
</xs:extension>
</xs:simpleContent>
</Xs:complexType>
</xs:schema>

12.8.4.1. ClearKey Example Using Laurl

An example of a Clear Key ContentProtection element using Laurl is as follows. One possible value of
@licenseType is “EME-1.0" when the license served by the Clear Key license server is in the format defined in [encry

pted-media).

<?xml version="1.0" encoding="UTF-8"?>
<MPD xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="urn:mpeg:dash:schema:mpd:2011 DASH-MPD.xsd http://dashif.org/guidelines/Cont
entProtection laurl.xsd"
xmlns="urn:mpeg:dash:schema:mpd:2011"
xmlns:dashif="http://dashif.org/guidelines/ContentProtection”
type="static" profiles="urn:mpeg:dash:profile:mp2t-simple:2011" minBufferTime="PT1.4S">
<Period id="42" duration="PT6158S">
<AdaptationSet mimeType="video/mp2t" codecs="avcl.4D401F,mp4a">
<ContentProtection schemeIdUri="urn:uuid:1077efec-cOb2-4d02-ace3-3cle52e2fb4b" value="Clear
Keyl.0">
<dashif:Laurl>https://clearKeyServer.foocompany.com</dashif:Laurl>
<dashif:Laurl licenseType="EME-1.0">file://cache/licenseInfo.txt</dashif:Laurl>
</ContentProtection>
</AdaptationSet>
</Period>
</MPD>

When used with a @licenseType equal to “EME-1.0":

e The GET request for the license includes in the body the JSON license request format defined in [encrypted-me
dia] section 9.1.3. The license request MAY also include additional authentication elements such as access
token, device or user ID.

e The response from the license server includes in the body the Clear Key license in the format defined in [encrypt
ed-media] section 9.1.4 if the device is entitled to receive the Content Keys.

13. Annex B

I ISSUE 43 rMerge Annex B from 4.3 to live services chapter (if not already duplicated).

14. Annex: Dolby Vision streams within ISO BMFF

-
I ISSUE 44 'Where is this used? Why is it an annex? Consider restructuring to improve usefulness.

This Annex defines the structures for the storage of Dolby Vision video streams in a file format compliant with the ISO
base media file format (ISOBMFF). Example file formats derived from the ISOBMFF include the Digital
Entertainment Content Ecosystem (DECE) Common File Format (CFF) and Protected Interoperable File Format
(PIFF). Note, that the file format defined here is intended to be potentially compliant with the DECE media
specifications as appropriate.

The Dolby Vision decoder configuration record provides the configuration information that is required to initialize the
Dolby Vision decoder.

The Dolby Vision Configuration Box contains the following information:

Box Type €dvcC’
Container DolbyVisionHEVCSampleEntry(€‘dvhe’), or DolbyVisionHVC1SampleEntry(€‘dvh1l’), or
Mandatory Yes

Quantity Exactly One

The syntaxes of the Dolby Vision Configuration Box and decoder configuration record are described below.

align(8) class DOVIDecoderConfigurationRecord

{
unsigned int (8) dv_version_major;
unsigned int (8) dv_version_minor;
unsigned int (7) dv_profile;
unsigned int (6) dv_level;
bit (1) dv_metadata_present_flag;
bit (1) el _present_flag;
bit (1) bl_present_flag;
const unsigned int (32)[5] reserved = 0;
}
class DOVIConfigurationBox extends Box(‘dvcC’)
{
DOVIDecoderConfigurationRecord() DOVIConfig;
¥

The semantics of the Dolby Vision decoder configuration record is described as follows.

dv_version_maijor - specifies the major version number of the Dolby Vision specification that the stream complies
with. A stream compliant with this specification shall have the value 1.

dv_version_minor - specifies the minor version number of the Dolby Vision specification that the stream complies
with. A stream compliant with this specification shall have the value 0.

dv_profile — specifies the Dolby Vision profile. Valid values are Profile IDs as defined in Table B.1 of Signaling
Dolby Vision Profiles and Levels, Annex B.

dv_level — specifies the Dolby Vision level. Valid values are Level IDs as defined in Table B.2 of Signaling Dolby
Vision Profiles and Levels, Annex B.

dv_metadata_present_flag — if 1 indicates that this track contains the supplemental enhancement information as
defined in clause 10.4.2.2.

el_present_flag — if 1 indicates that this track contains the EL HEVC video substream.

bl_present_flag — if 1 indicates that this track contains the BL HEVC video substream.

Note: The settings for these semantic values are specified in Section A.7.1 Constraints on EL Track.

This section describes the Dolby Vision sample entries. It is used to describe tracks that contain substreams that
cannot necessarily be decoded by HEVC compliant decoders.

The Dolby Vision sample entries contain the following information:

Box Type ‘dvhe’, ’dvhl’
Container Sample Description Box (“stsd’)
Mandatory Yes

Quantity One or more sample entries of the same type may be present

The syntax for the Dolby Vision sample entries are described below.

class DolbyVisionHEVCSampleEntry() extends HEVCSampleEntry(‘dvhe’)

{
DOVIConfigurationBox() config;
}
class DolbyVisionHVC1SampleEntry() extends HEVCSampleEntry(‘dvh1’)
{
DOVIConfigurationBox() config;
}

A Dolby Vision HEVC sample entry shall contain a Dolby Vision Configuration Box as defined in C.2.2.

config - specifies the configuration information required to initialize the Dolby Vision decoder for a Dolby Vision EL
track encoded in HEVC.

Compressorname in the base class VisualSampleEntry indicates the name of the compressor used, with the value
“\013DOVI Coding” being recommended (\013 is 11, the length of the string “DOVI coding” in bytes).

The brand ‘dby1’ SHOULD be used in the compatible_brands field to indicate that the file is compliant with all Dolby
Vision UHD Extension as outlined in this document. The major_brand shall be set to the ISO-defined brand,e.g.
‘is06’.

A Dolby Vision video stream can be encapsulated in a single file as a dual-track file containing separate BL and EL

tracks. Each track has different sample descriptions.

For the visual sample entry boxin an EL track a DolbyVisionHEVCVisualSampleEntry (dvhe) or
DolbyVisionHVC1VisualSampleEntry (dvh1) SHALL be used.

The visual sample entries SHALL contain an HEVC Configuration Box (hvcc) and a Dolby Vision Configuration Box
(dvcC).

The EL track shall meet the following constraints:

¢ Inthe handler reference box, the handler_type field shall be set to 'vide’.
e The media information header box shall contain a video media header box.

e The dependency between the Dolby Vision base and enhancement track shall be signaled by the tref boxin
the enhancement track.. The reference_type shall be set to vdep.

e The dv_profile field in the Dolby Vision Configuration Box (dvcc) shall be set according the encoded Dolby
Vision profile.

e The dv_levelfield in the Dolby Vision Configuration Box (dvcC) shall be set according the encoded Dolby Vision
level.

e The dv_metadata_present_flag shall be setto 1.
e The el_present_flag shall be setto 0 or 1.

e The bl_present_flag shall be set to 0.

The following table shows the box hierarchy of the EL track.

Nesting Level Reference
4 5 6 7
stbl ISO/IEC 14496-
stsd 12
dvhe, or dvhl Section A.3
hveC
dvcC Section 3.1
stts ISO/IEC 14496-
stsc 12
stsz
stz?2
stco
co6d

Figure 61 Sample table box hierarchy for the EL track of a dual-track Dolby Vision file

Note: This is not an exhaustive list of boxes.

For a dual-track file, the movie fragments carrying the BL and EL shall meet the following constraints:

e The adjacent movie fragments (moof and mdat) for the base and enhancement track shall be interleaved with BL
followed by EL. BL and EL samples shall be placed in separate Movie Fragments and that each BL Movie
Fragment shall be immediately followed by an EL movie fragment containing the same number of samples with
identical composition timestamps.

The track fragment random access box (tfra) for the base and enhancement track shall conform to the ISO/IEC
14496-12 (section 8.8.10) and meet the following additional constraint:

e The value of the time field in the track fragment random access box indicates the presentation time of a random
accessible sample. This time value shall be identical for every corresponding random accessible sample in the
base and enhancement track.

15. Annex: Signaling Dolby Vision profiles and levels
I ISSUE 45 'Where is this used? Why is it an annex? Consider restructuring to improve usefulness.

This Annex defines the detailed list of Dolby Vision profile/levels and how to represent them in a string format. This
string can be used for identifying Dolby Vision device capabilities and identifying the type of the Dolby Vision
streams presented to device through various delivery mechanisms such as HTML 5.0 and MPEG-DASH.

The Dolby Vision codec provides a rich feature set to support various ecosystems such as Over the Top streaming,
Broadcast television, Blu-Ray discs, and OTT streaming. The codec also supports many different device
implementation types such as GPU accelerated software implementation, full-fledged hardware implementation, and
hardware plus software combination. One of the Dolby Vision codec features allows choosing the type of backward
compatibility such as non-backward compatible or backward compatible with SDR. A Dolby Vision capable device
may not have all the features or options implemented, hence it is critical the device advertises the capabilities and
content server provides accurate Dolby vision stream type information.

Following are the currently supported Dolby Vision profiles:

Profile | Profile BL EL BL:EL BL Backward | BL/EL Full | BL Codec | EL Codec
D Name Codec Codec Compatibility* | Alignment** | Profile Profile
2 dvheder | HEVC8 | HEVCE 1:1/4 SDR No H 265 Main H.265 Main
3 dvhe.den | HEVC8 | HEVCS 111 None No H.265 Main H.265 Main
4 dvhedtr | HEVC10 | HEVCI1O0 | 1:1/4 SDR No H.265 Mainl0 | H.265 Mainl0
5 dvhestn | HEVC10 | N/A N/A None N/A H.265Mainl0 | N/A
6 dvhedth | HEVCI10 | HEVCIO | 1:1/4 HDR.10 No H.265 Mainl0 | H.265 Mainl0
7 dvhedtb | HEVC10 | HEVCI10 | 1:1/4 for | Blu-ray HDR No H.265 Mainl0 | H.265 Mainl0
UHD
1:1 for
FHD
Figure 62 Dolby Vision profiles
Legend:
BL:EL

ratio of Base Layer resolution to Enhancement Layer resolution (when applicable)
BL/EL Full alignment
The Enhancement Layer (EL) GOP and Sub-GOP structures are fully aligned with Base Layer (BL), i.e. the
BL/EL IDRs are aligned, BL/EL frames are fully aligned in decode order such that skipping or seeking is
possible anywhere in the stream not only limited to IDR. BL AU and EL AU belonging to the same picture shall
have the same POC (picture order count)

Encoder Recommendations

¢ Dolby Vision Encoders should only use baseline profile composer for profiles which are non-backward
compatible, i.e. the BL Backward Compatibility = None.

e Encoders producing Dolby Vision dual layer streams should generate BL/EL with full GOP/Sub-GOP structure
alignment for all the profiles listed in Table 4.

The following is the profile string naming convention: dv[BL codec type].[number of layers][bit depth]

[backward compatibility] [EL codec type][EL codec bit depth]

Attribute

Syntax

dv

dv = Dolby Vision

BL codec type

he =HEVC

Number of layers

s =single layer

d = dual layer without enforcement of BL/EL GOP structure
and POC alignment

p = dual layer with enforcement of BL/EL GOP structure
and POC alignment

Bit depth e =8
t =10

Backw a-r(-i' n =non-backward compatible

compatibility r =SDR backward compatible (rec.709, 100 nits)
h = HDR10 backward compatible
b = Blu-ray backward compatible (Ultra HD Blu-ray“High

Dynamic Range)

EL codec Type a=AVC

(see Note 1 below) h=HEVC

EL codec bit depth | e =8

(See Note 1 below) t=10

Notes:

Figure 63 Components of a Dolby Vision @codecs string.

1. [EL codec type] and [EL codec bit depth] shall only be presentif the EL codec type is different from the BL

codec.

2. Interlaced: There is no support for interlaced video at this time.

3. Codecs other than HEVC or AVC may be supported in future.

The Dolby Vision level indicates the maximum frame rate and resolution supported by the device for a given profile.
Typically there is a limit on the maximum number of pixels the device can process per second in a given profile; the
level indicates the maximum pixels and the maximum bitrate supported in that profile. Since maximum pixels per
second is a constant for given level, the resolution can be reduced to get higher frame rate and vice versa. Following

are the possible levels:

Max Bit Rates (BL and EL
combined)

Level | Level Example Max Resolution x | main tier | high tier

1D Name FPS (Mbps) (Mbps)

1 hd24 1280x720x24 20 50

2 hd30 1280x720x30 20 50

3 thd24 1920x1080x24 20 70

4 thd30 1920x1080x30 20 70

5 thd60 1920x1080x60 20 70

6 uhd24 3840x2160x24 25 130

7 uhd30 3840x2160x30 25 130

8 uhd48 3840x2160x48 40 130

9 uhd60 3840x2160x60 40 130

Figure 64 Dolby Vision levels.

The following is the level string naming convention: [resolution][fps][high tier]

Attribute Syntax

Resolution | hd = 720
fhd = 1080
uhd = 2160

FPS Frames per second (e.g. 24, 30, 60)

High Tier Whether or not higher frame rates are supported. If yes, “h” will be appended

Figure 65 Components of a Dolby Vision level string.

The profile and level string is recommended to be joined in the following manner: Format: [Profile String].[Level
String]

Examples

dvav.per.fhd30
dual layer avc 8 bit with enforcement of BL/EL GOP Structure and POC alignment, rec709 backwards
compatible, 1920x1080@30fps

dvhe.stn.uhd30
single layer hevc 10 bit non-backwards compatible, 3840x2160@30fps

The device capabilities can be expressed in many ways depending on the protocol used by the streaming service or
VOD service. The device could maintain a list of supported capabilities in an array:

String capabilities [] = {“dvhe.dtr.uhd24”, “dvhe.stn.uhd30”}

After receiving the manifest the Player could iterate over the stream types and check whether a stream type is
supported by searching the capabilities[].

When using HTTP, the device could send the capabilities via the user agent string in HTTP request in following
manner:

Opera/9.80 (Linux armv71) Presto/2.12.407 Version/12.51 Model-UHD+dvhe.dtr.uhd24+dvhe.stn.uhd30/
1.0.0 (Manufacturer name, Model)

A server program can search for +dv to determine whether Dolby Vision is supported and further identify the profiles
and level supported by parsing the characters following the +dv. Multiple profiles/level pairs can be listed with +
beginning each profile/level pair.

16. Annex: Display management message
I ISSUE 46 'Where is this used? Why is it an annex? Consider restructuring to improve usefulness.

A display management (DM) message contains metadata in order to provide dynamic information about the colour
volume of the video signal. This metadata can be employed by the display to adapt the delivered HDR imagery to the
capability of the display device. The information conveyed in this message is intended to be adequate for purposes
corresponding to the use of Society of Motion Picture and Television Engineers ST 2094-1 and ST 2094-10.

The syntax and semantics for DM_data() are defined in clause C.2.

DM data () { Descriptor
app identifier ue(v)
app_version ue(v)
metadata_refresh_flag u(l)
if(metadata refresh flag) {

num ext blocks ue(v)

if(num ext blocks) {
while(!byte aligned())
dm_alignment zero bit f(1)
for(1=0;1 <num ext blocks;1++) {
ext dm data block(i)

}

}
while('byte aligned())
dm_alignment zero bit f(1)

Figure 66 DM _data()

ext dm data block() { Descriptor
ext _block length ue(v)
ext block level u(8)

ext dm data block payload(ext block length,
ext block level)

}

Figure 67 ext_dm_data_block()

ext dm data block payload(ext block length, ext block level Descriptor
: {ext_block_len_bits = 8 * ext _block length

ext block use bits =0

if(ext block level ==1) {
min_PQ u(12)
max_PQ u(12)
avg PQ u(12)
ext block use bits += 36

}

if(ext block level ==2) {
target_max_PQ u(12)
trim_slope u(12)
trim_offset u(12)
trim_power u(12)
trim_chroma_weight u(12)
trim_saturation_gain u(12)
ms_weight 1(13)
ext block use bits += 85

}

if(ext block level ==5) {
active_area_left_offset u(13)
active_area_right offset u(13)
active_area_top_offset u(13)
active_area_bottom_offset u(13)
ext block use bits +=52

}

while(ext block use bits++ < ext block len bits)
ext dm_alignment_zero_bit f(1)

Figure 68 ext_dm_data_block_payload()

This clause defines the semantics for DM_data().

For the purposes of the present clause, the following mathematical functions apply:

x 3 x=20

Abs(x)={ x 3 x<0

Floor(x) is the largest integer less than or equal to X.

1 ; x>0
Sign(x)=40 ; x=0
-1 ; x<0

X Z<X

Clip3(x,y,2) =4y z>y
z : otherwise

Round(x) = Sign(x)*Floor(Abs(x)+0.5)

/ = Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated
—7/4 and 7/—4 are truncated to —1.

app_identifier
identifies an application in the ST 2094 suite.

app_version
specifies the application version in the application in the ST 2094 suite.

metadata_refresh_flag
when set equal to 1 cancels the persistence of any previous extended display mapping metadata in output order
and indicates that extended display mapping metadata follows. The extended display mapping metadata
persists from the coded picture to which the SEI message containing DM_data() is associated (inclusive) to the
coded picture to which the next SEI message containing DM_data() and with metadata_refresh_flag set equal
to 1 in output order is associated (exclusive) or (otherwise) to the last picture in the coded video segeunce
(inclusive). When set equal to 0 this flag indicates that the extended display mapping metadata does not follow.

num_ext_blocks
specifies the number of extended display mapping metadata blocks. The value shall be in the range of 1 to 254,
inclusive.

dm_alignment_zero_bit
shall be equal to 0

ext_block_length[i]
is used to derive the size of the i-th extended display mapping metadata block payload in bytes. The value shall
be in the range of 0 to 1023, inclusive.

ext_block_level[i]
specifies the level of payload contained in the i-th extended display mapping metadata block. The value shall be
in the range of 0 to 255, inclusive. The corresponding extended display mapping metadata block types are
defined in Table E.1.4. Values of ext_block_level[i] that are ATSC reserved shall not be present in the
bitstreams conforming to this version of ATSC specification. Blocks using ATSC reserved values shall be
ignored.

When the value of ext_block_level[i] is set equal to 1, the value of ext_block_length[i] shall be set equal to 5.
When the value of ext_block_level[i] is set equal to 2, the value of ext_block_length[i] shall be set equal to 11.

When the value of ext_block_level[i] is set equal to 5, the value of ext_block_length[i] shall be set equal to 7.

ext block level extended metadata block type
0 Reserved
1 Level 1 Metadata — Content Range
2 Level 2 Metadata — Trim Pass
3 Reserved
4 Reserved
5 Level 5 Metadata — Active Area
6...255 Reserved

Figure 69 Definition of extended display mapping metadata block type.

When an extended display mapping metadata block with ext_block_level equal to 5 is present, the following
constraints shall apply:

¢ Anextended display mapping metadata block with ext_block_level equal to 5 shall be preceded by at least one
extended display mapping metadata block with ext_block_level equal to 1 or 2.

e Between any two extended display mapping metadata blocks with ext_block_level equal to 5, there shall be at
least one extended display mapping metadata block with ext_block_level equal to 1 or 2.

¢ No extended display mapping metadata block with ext_block_level equal to 1 or 2 shall be present after the last
extended display mapping metadata block with ext_block_level equal to 5

e The metadata of an extended display mapping metadata block with ext_block_level equal to 1 or 2 shall be
applied to the active area specified by the first extended display mapping metadata block with ext_block_level
equal to 5 following this block.

When the active area defined by the current extended display mapping metadata block with ext_block_level equal to
5 overlaps with the active area defined by preceding extended display mapping metadata blocks with
ext_block_level equal to 5, all metadata of the extended display mapping metadata blocks with ext_block_level
equal to 1 or 2 associated with the current extended display mapping metadata block with ext_block_level equal to 5
shall be applied to the pixel values of the overlapping area.

min_PQ specifies the minimum luminance value of the current picture in 12-bit PQ encoding. The value shall be in
the range of 0 to 4095, inclusive. Note that the 12-bit min_PQ value with full range is calculated as follows:

min_PQ = Clip3(@, 4095, Round(Min * 4@95))

where Min is MinimumPgencodedMaxrgb as defined in clause 6.1.3 of SMPTE ST 2094-10.

max_PQ specifies the maximum luminance value of current picture in 12-bit PQ encoding. The value shall be in the
range of 0 to 4095, inclusive. Note that the 12-bit max_PQ value with full range is calculated as follows:

max_PQ = Clip3(@, 4095, Round(Max * 4095))

where Max is MaximumPgencodedMaxrgb as defined in clause 6.1.5 of SMPTE ST 2094-10.

avg_PQ specifies the midpoint luminance value of current picture in 12-bit PQ encoding. The value shall be in the
range of 0 to 4095, inclusive. Note that the 12-bit avg_PQ value with full range is calculated as follows:

avg_PQ = Clip3(@, 4095, Round(Avg * 4095))

where Avg is AveragePgencodedMaxrgb as defined in section 6.1.4 of SMPTE ST 2094-10.

target_max_PQ specifies the maximum luminance value of a target display in 12-bit PQ encoding. The value shall
be in the range of 0 to 4095, inclusive. The target_max_PQ is the PQ encoded value of
TargetedSystemDisplayMaximumLuminance as defined in clause 10.4 of SMPTE ST 2094-1.

If there is more than one extended display mapping metadata block with ext_block_level equal to 2, those blocks
shall have no duplicated target_max_PQ.

trim_slope specifies the slope metadata. The value shall be in the range of 0 to 4095, inclusive. If trim_slope is not
present, it shall be inferred to be 2048. Note that the 12-bit slope value is calculated as follows:

7 = Clip3(@, 4095, Round((E-0.5) * 4096))

where S is the ToneMappingGain as defined in clause 6.2.3 of SMPTE ST 2094-10.

trim_offset specifies the offset metadata. The value shall be in the range of 0 to 4095, inclusive. If trim_offset is not
present, it shall be inferred to be 2048. Note that the 12-bit offset value is calculated as follows:

7 = Clip3(@, 4095, Round((E+8.5) * 4096))

where O is the ToneMappingOffset as defined in clause 6.2.2 of SMPTE ST 2094-10.

trim_power specifies the power metadata. The value shall be in the range of 0 to 4095, inclusive. If trim_power is
not present, it shall be inferred to be 2048. Note that the 12-bit power value is calculated as follows:

= Clip3(@, 4095, Round((@-8.5) * 4096))

where P is the ToneMappingGamma as defined in clause 6.2.4 of SMPTE ST 2094-10.

trim_chroma_weight specifies the chroma weight metadata. The value shall be in the range of 0 to 4095, inclusive.
If trim_chroma_weight is not present, it shall be inferred to be 2048. Note that the 12-bit chroma weight value is
calculated as follows:

BIEEma_E&

% = Clip3(@, 4095, Round((EE+0.5) * 4096))

where CW is the ChromaCompensationWeight as defined in clause 6.3.1 of SMPTE ST 2094-10.

trim_saturation_gain specifies the saturation gain metadata. The value shall be in the range of 0 to 4095, inclusive.
If trim_saturation_gain is not present, it shall be inferred to be 2048. Note that the 12-bit saturation gain value is
calculated as follows:

EEEE_PRREERERRE_BEEE = Clip3(@, 4095, Round((BE+0.5) * 4096))

where SG is the SaturationGain as defined in clause 6.3.2 of SMPTE ST 2094-10.

ms_weight specifies the multiscale weight metadata. The value shall be in the range of -1 to 4095, inclusive. If
ms_weight is not present, it shall be inferred to be 2048. Where ms_weight is equal to -1, the bit stream indicates
ms_weight is unspecified. The 13-bit multiscale weight value is calculated as follows:

B = -1 OR Clip3(@, 4695, Round(ES * 4096))

where MS is the ToneDetailFactor as defined in clause 6.4.2 of SMPTE ST 2094-10.

active_area_left_offset, active_area_right_offset, active_area_top_offset, active_area_bottom_offset
specify the active area of current picture, in terms of a rectangular region specified in picture coordinates for active
area. The values shall be in the range of 0 to 8191, inclusive. See also UpperLeftCorner and LowerRightCorner
definitions in ST 2094-1.

If active_area_left_offset, active_area_right_offset, active_area_top_offset, active_area_bottom_offset are not
present, they shall be inferred to be 0.

The coordinates of top left active pixel is derived as follows:

Xiop_left = active_area_left_offset

Yiop_left = active_area_top_offset

The coordinates of top left active pixel are defined as the UpperLeftCorner in clause 9.2 of SMPTE ST.2094-1.

With Xsize is the horizontal resolution of the current picture and Ysize is the vertical resolution of current picture, the
coordinates of bottom right active pixel are derived as follows:

Xbottom_right = XSize - 1 - active_area_right_offset

Yhottom_right = YSize - 1 - active_area_bottom_offset

where Xpottom_right greater than Xtop et @nd Ypottom_right 9reater than Yigp jeft-

The coordinates of bottom right active pixel are defined as the LowerRightCorner in clause 9.3 of SMPTE ST.2094-
1.

ext_dm_alignment_zero_bit shall be equal to 0.

17. Annex: Composing metadata message
I ISSUE 47 'Where is this used? Why is it an annex? Consider restructuring to improve usefulness.

A composing metadata (CM) message contains the metadata which is needed to apply the post-processing
process as described in the ETSIETCCM specification to recreate the HDR UHDTV pictures.

The syntax for CM_data() is shown in table D.1. The number of bits “v’ used to represent each of the syntax elements
of CM_data(), for which the parsing process is specified by the descriptor u(v), is defined in table D.2.

CM data() { Descriptor
ccm_profile u(4)
ccm level u(4)
coefficient log2 denom ue(v)
BL_bit_depth_minus8 ue(v)
EL bit depth minus8 ue(v)
hdr_bit depth _minus38 ue(v)
disable_residual_flag u(l)
for(cmp =0; cmp < 3; cmp++) {

num_pivots_minus2[cmp] ue(v)
for (pivot_idx = 0; pivot_idx < num_pivots_minus2[cmp]+ 2; pivot_idx ++) {
pred_pivot_value[cmp][pivot idx | u(v)

/ end of pivot points for BL three components
} flemp

for (cmp = 0; cmp < 3; cmp++) { /mapping parameters
for (pivot_idx = 0; pivot_idx < num_pivots_minus2[cmp]+ 1; pivot_idx++) {

mapping_idc[cmp][pivot idx] ue(v)
if(mapping_idc [cmp][pivot idx] == MAPPING POLYNOMIAL) {
poly order minusl|cmp][pivot idx] ue(v)
for(1=0:1<=poly order minusl[cmp][pivot idx]+ 1:i++) {
poly_coef int[cmp][pivot idx][1] se(v)
poly_coef[cmp][pivot_idx J[1] u(v)
}
else iff mapping_idc [cmp][pivot_idx] == MAPPING MMR) {
mmr_order_minus1[cmp][pivot_idx] u(2)
mmr_constant_int[cmp][pivot idx] se(v)
mmr_constant[cmp][pivot_idx] u(v)

for(i=1;1i<=mmr_order minusl +1;i++) {
for j=0:j<T:j+4) {
mmr_coef int[cmp][pivot_idx J[i][j] se(v)
mmr_coef] cmp][pivot_idx J[i][j] u(v)
} // the j-th coefficients
} // the i-th order
+ // MMR coefficients
// pivot_idx
} //cmp
if (!disable residual flag) {
for (cmp = 0; cmp < 3; cmp++) { //quantization parameters

nlq offset[cmp] u(v)
hdr_in_max_int[cmp] ue(v)
hdr_in_max[cmp] u(v)
linear_deadzone slope int[cmp] ue(v)
linear_deadzone_slope[cmp] u(v)
linear_deadzone_threshold int[cmp] ue(v)
linear_deadzone_threshold[cmp] u(v)
// emp

Figure 70 cM_data()

CM_data() { Descriptor

ccm_profile u(4)
ccm_level u(4)
coefficient_log2 denom ue(v)
BL bit_depth_minus8 ue(v)
EL _bit_depth_minus8 ue(v)
hdr_bit_depth_minus8 ue(v)
disable residual flag u(l)
for(cmp =0; cmp < 3; cmp++) {
num_pivets minus2[cmp | ue(v)
for (pivot idx = 0; pivot idx < num pivots minus2[cmp]+ 2; pivot idx ++) {
pred pivot value[cmp][pivot idx] u(v)

} // end of pivot points for BL three components
} /lemp

for (cmp = 0; cmp < 3; cmp++) { //mapping parameters
for (pivot idx = 0; pivot_idx < num pivots minus2[cmp]+ 1; pivot_idx++) {

mapping_idc[cmp][pivot_idx] ue(v)
if(mapping_ide [emp][pivot_idx] = MAPPING POLYNOMIAL) {
poly_order_minusl[cmp][pivot_idx] ue(v)
for(i=0;i<=poly_order_minusl[cmp][pivot_idx]+ 1;i++) {
poly_coef_int[cmp][pivot_idx J[i] se(v)
poly_coef[cmp][pivot idx][1] u(v)
}
else if{ mapping_idc [cmp][pivot_idx] == MAPPING MMR) {
mmr_order minusl[cmp][pivot idx] u(2)
mmr_constant_int[cmp][pivot_idx] se(v)
mmr_constant| cmp][pivot_idx | uv)

for(i=1;i<=mmr order minusl +1;i++) {

for G=0:j<T7:5+4) {

mmr_coef int[cmp][pivot idx J[1][j] se(v)
mmr_coefl cmp][pivot idx J[i][]] u(v)
} // the j-th coefficients

4 // the i-th order
/I MMR coefficients
// pivot_idx

} /emp

if (!disable _residual flag) {
for (cmp = 0; cmp < 3; emp++) { //quantization parameters

nlq_offset[cmp] u(v)
hdr_in_max int[cmp] ue(v)
hdr_in_max[cmp] u(v)
linear_deadzone slope_int[cmp] ue(v)
linear deadzone slope[cmp | u(v)
linear deadzone threshold int[cmp] ue(v)
linear deadzone threshold[cmp] uv)

} // cmp

Figure 71 Specification of number of bits "v" for CM_data() syntax elements with descriptor u(v)

The definitions of the header parameter values are contained in ETCCM, Section 5.3.2, “CM Header Parameter
Definitions”.

The definitions of the mapping parameter values are contained in ETCCM, Section 5.3.3, “CM Mapping Parameter
Definitions”.

Parameter cm_alignment_zero_bit shall be equal to 0.

18. Annex: Sample Dual-layer MPD

-
I ISSUE 48 'Where is this used? Why is it an annex? Consider restructuring to improve usefulness.

Below is an example dual-layer MPD, with dual adaptation sets — both a Base layer and an Enhancement Layer.
ltems of note are highlighted:

<Period>
<AdaptationSet subsegmentAlignment="true" subsegmentStartsWithSAP="1" frameRate="24000/1001

<Representation mimeType="video/mp4" codecs=" hvcl.2.100000000.L.150.B0" id="base-layer"
bandwidth="14156144" width="3840" height="2160">
<BaseURL>BL_dual_track_BC.mp4</BaseURL>
<SegmentBase indexRange="795-1210">
<Initialization range="0-794"/>
</SegmentBase>
</Representation>
<Representation mimeType="video/mp4" codecs="dvhe.dtr" id="enhancement-layer"
dependencyId="base-layer" bandwidth="3466528" width="1920" height="1080">
<BaseURL>EL_dual_track_BC.mp4</BaseURL>
<SegmentBase indexRange="704-1119">
<Initialization range="0-703"/>
</SegmentBase>
</Representation>
</AdaptationSet>
<AdaptationSet mimeType="audio/mp4" codecs="ec-3" lang="und"
subsegmentAlignment="true" subsegmentStartsWithSAP="1">
<Representation id="2" bandwidth="192000">
<AudioChannelConfiguration
schemeIdUri="tag:dolby.com,2014:dash:audio_channel_configuration:2011" value="F801"/>
<BaseURL>audio.mp4</BaseURL>
<SegmentBase indexRange="652-875">
<Initialization range="0-651"/>
</SegmentBase>
</Representation>
</AdaptationSet>
</Period>
</MPD>

19. Externally defined terms®

adaptation set
See [MPEGDASH
asset identifier
See [MPEGDASH
CMAF track file
See [MPEGCMAF
essential property descriptor
See [MPEGDASH
index segment
See [MPEGDASH
initialization segment
See [MPEGDASH
supplemental property descriptor
See [MPEGDASH

Conformancet

Conformance requirements are expressed with a combination of descriptive assertions and RFC 2119 terminology.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED?”, “MAY”, and “OPTIONAL” in the normative parts of this document are to be interpreted as
described in RFC 2119. However, for readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked as non-normative, examples, and

notes. [RFC2119

Examples in this specification are introduced with the words “for example” or are set apart from the normative text

with class="example", like this:

EXAMPLE 20
This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the normative text with class="note", like this:

I Note, this is an informative note.

Index:
Terms defined by this specification?

adaptation set
addressing modes

alternative content
asset identifier
associated content
audio adaptation set

availability window

available

bitstream switching adaptation set

CMAF track file
dynamic MPD

effective time shift buffer

essential property descriptor

explicit addressing
indexed addressing
index segment

initialization segment

1P

live edge

main content

Media Presentation
media segment
MPD

MPD refreshes

MPD start time

MPD timeline

MPD validity duration

period-connected
periods
presentation delay
representation
sample timeline
segment

segment availability times

segment end point
segment references
segment start point
simple addressing

static MPD

supplemental property descriptor

text adaptation set

thumbnail adaptation set

timescale
timescale units
time shift
time shift buffer

unnecessary segment reference

video adaptation set

XLink

XLink elements

References?

Normative References:

[CEAT708]
Digital Television (DTV) Closed Captioning CEA-708-E. URL:
https://standards.cta.tech/kwspub/published_docs/ANSI-CTA-708-E-Preview.pdf
[Dolby-TrueHD]
MLP (Dolby TrueHD) streams within the ISO Base Media File Format, version 1.0, September 2009.
[DolbyVisionISOBMFF]
Dolby Vision streams within the ISO base media file format. URL:
https://www.dolby.com/us/en/technologies/dolby-vision/dolby-vision-bitstreams-within-the-iso-base-media-file-
format.pdf
[DTS9302J81100]
Implementation of DTS Audio in Media Files Based on ISO/IEC 14496.

[DTS9302K62400]
Implementation of DTS Audio in Dynamic Adaptive Streaming over HTTP (DASH).
[DVB-DASH]
ETSITS 103 285 V1.2.1 (2018-03): Digital Video Broadcasting (DVB); MPEG-DASH Profile for Transport of
ISO BMFF Based DVB Services over IP Based Networks. March 2018. Published. URL:
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
[EME-INITDATA-CENC]
David Dorwin; et al. "cenc" Initialization Data Format. 15 September 2016. NOTE. URL:
https://www.w3.org/TR/eme-initdata-cenc/
[ENCRYPTED-MEDIA]
David Dorwin; et al. Encrypted Media Extensions. 18 September 2017. REC. URL:
https://mww.w3.org/TR/encrypted-media/
[ETSI102114]
ETSITS 102 114: DTS Coherent Acoustics; Core and Extensions with Additional Profiles. URL:
https://www.etsi.org/deliver/etsi_ts/102100_102199/102114/01.04.01_60/ts_102114v010401p.pdf
[ETSI102366]
ETSITS 102 366: Digital Audio Compression (AC-3, Enhanced AC-3) Standard. URL:
https://www.etsi.org/deliver/etsi_ts/102300_102399/102366/01.04.01_60/ts_102366v010401p.pdf
[ETSI103190-1]
ETSITS 103 190-1 V1.3.1 (2018-02): Digital Audio Compression (AC-4) Standard; Part 1: Channel based
coding. February 2018. Published. URL:
http://www.etsi.org/deliver/etsi_ts/103100_103199/10319001/01.03.01_60/ts_10319001v010301p.pdf
[ETSI103433-1]
ETSITS 103 433-1: High-Performance Single Layer High Dynamic Range (HDR) System for use in Consumer
Electronics devices; Part 1: Directly Standard Dynamic Range (SDR) Compatible HDR System (SL-HDR1).
URL: https://iwww.etsi.org/deliver/etsi_ts/103400 103499/10343301/01.02.01_60/ts_10343301v010201p.pdf
[1ISO14496-15]
Information technology -- Coding of audio-visual objects -- Part 15: Carriage of network abstraction layer (NAL)
unit structured video in the ISO base media file format. February 2017. Published. URL:
https://www.iso.org/standard/69660.html

[1ISO14496-3-2009-AMD4-2013]

https://standards.cta.tech/kwspub/published_docs/ANSI-CTA-708-E-Preview.pdf
https://standards.cta.tech/kwspub/published_docs/ANSI-CTA-708-E-Preview.pdf
https://www.dolby.com/us/en/technologies/dolby-vision/dolby-vision-bitstreams-within-the-iso-base-media-file-format.pdf
https://www.dolby.com/us/en/technologies/dolby-vision/dolby-vision-bitstreams-within-the-iso-base-media-file-format.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/103200_103299/103285/01.02.01_60/ts_103285v010201p.pdf
https://www.w3.org/TR/eme-initdata-cenc/
https://www.w3.org/TR/eme-initdata-cenc/
https://www.w3.org/TR/encrypted-media/
https://www.w3.org/TR/encrypted-media/
https://www.etsi.org/deliver/etsi_ts/102100_102199/102114/01.04.01_60/ts_102114v010401p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/102114/01.04.01_60/ts_102114v010401p.pdf
https://www.etsi.org/deliver/etsi_ts/102300_102399/102366/01.04.01_60/ts_102366v010401p.pdf
https://www.etsi.org/deliver/etsi_ts/102300_102399/102366/01.04.01_60/ts_102366v010401p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/10319001/01.03.01_60/ts_10319001v010301p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/10319001/01.03.01_60/ts_10319001v010301p.pdf
https://www.etsi.org/deliver/etsi_ts/103400_103499/10343301/01.02.01_60/ts_10343301v010201p.pdf
https://www.etsi.org/deliver/etsi_ts/103400_103499/10343301/01.02.01_60/ts_10343301v010201p.pdf
https://www.iso.org/standard/69660.html
https://www.iso.org/standard/69660.html

New levels for AAC profiles. December 2013. Published. URL: https://www.iso.org/standard/63022.html
[1ISO14496-30]
Information technology -- Coding of audio-visual objects -- Part 30: Timed text and other visual overlays in ISO
base media file format. November 2018. Published. URL: https://www.iso.org/standard/75394.html
[1ISO23000-19-2018-AMD2-2019]
XHE-AAC and other media profiles. January 2019. Published. URL: https://www.iso.org/standard/74442.html
[1ISO23001-8]
Information technology -- MPEG systems technologies -- Part 8: Coding-independent code points. May 2016.
Withdrawn. URL: https://www.iso.org/standard/69661.html
[1ISO23003-1]
Information technology -- MPEG audio technologies -- Part 1: MPEG Surround. February 2007. Published. URL:
https://www.iso.org/standard/44159.html
[1ISO23008-3]
Information technology -- High efficiency coding and media delivery in heterogeneous environments -- Part 3: 3D
audio. February 2019. Published. URL: https://www.iso.org/standard/74430.html
[ISOBMFF]
Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format. December
2015. International Standard. URL:
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960 ISO IEC_14496-12 2015.zip
[ITU-R-BT.709]
Recommendation [TU-R BT.709-6 (06/2015), Parameter values for the HDTV standards for production and
international programme exchange. 17 June 2015. Recommendation. URL.: https://www.itu.int/rec/R-REC-
BT.709/
[MEDIA-FRAGS]
Raphaél Troncy; et al. Media Fragments URI 1.0 (basic). 25 September 2012. REC. URL:
https://mww.w3.org/TR/media-frags/
[MIXED-CONTENT]
Mike West. Mixed Content. 2 August 2016. CR. URL: https://mwww.w3.org/TR/mixed-content/
[MP4]
Information technology -- Coding of audio-visual objects -- Part 14: MP4 file format. November 2018. Published.
URL: https://www.iso.org/standard/75929.html
[MPEG2TS]
Information technology -- Generic coding of moving pictures and associated audio information -- Part 1:
Systems. June 2019. Published. URL: https://www.iso.org/standard/75928.html

[MPEG4]
ISOIEC 14496-12: ISO base media file format. ISO/IEC.

[MPEGAAC]
Information technology -- Coding of audio-visual objects -- Part 3: Audio. September 2009. Published. URL:
https://www.iso.org/standard/53943.html
[MPEGAVC]
Information technology -- Coding of audio-visual objects -- Part 10: Advanced Video Coding. September 2014.
Published. URL: https://www.iso.org/standard/66069.html
[MPEGCENC]
Information technology -- MPEG systems technologies -- Part 7: Common encryption in ISO base media file
format files. February 2016. Published. URL: https://www.iso.org/standard/68042.html
[MPEGCMAF]
Information technology -- Multimedia application format (MPEG-A) -- Part 19: Common media application
format (CMAF) for segmented media. January 2018. Published. URL: https://www.iso.org/standard/71975.html
[MPEGDASH]
Information technology -- Dynamic adaptive streaming over HTTP (DASH) -- Part 1: Media presentation
description and segment formats. August 2019. Published. URL: https://www.iso.org/standard/75485.html

[MPEGDASHCMAFPROFILE]
N18641 WD of ISO/IEC 23009-1 4th edition AMD 1 Client event and timed metadata processing.

[MPEGHEVC]
Information technology -- High efficiency coding and media delivery in heterogeneous environments -- Part 2:
High efficiency video coding. October 2017. Published. URL: https://www.iso.org/standard/69668.html
[RFC2119]
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March 1997. Best Current Practice.
URL: https://tools.ietf.org/html/rfc2119
[RFC7232]
R. Fielding, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests. June 2014.
Proposed Standard. URL: https://httpwg.org/specs/rfc7232.html

https://www.iso.org/standard/63022.html
https://www.iso.org/standard/63022.html
https://www.iso.org/standard/75394.html
https://www.iso.org/standard/75394.html
https://www.iso.org/standard/74442.html
https://www.iso.org/standard/74442.html
https://www.iso.org/standard/69661.html
https://www.iso.org/standard/69661.html
https://www.iso.org/standard/44159.html
https://www.iso.org/standard/44159.html
https://www.iso.org/standard/74430.html
https://www.iso.org/standard/74430.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip
https://www.itu.int/rec/R-REC-BT.709/
https://www.itu.int/rec/R-REC-BT.709/
https://www.w3.org/TR/media-frags/
https://www.w3.org/TR/media-frags/
https://www.w3.org/TR/mixed-content/
https://www.w3.org/TR/mixed-content/
https://www.iso.org/standard/75929.html
https://www.iso.org/standard/75929.html
https://www.iso.org/standard/75928.html
https://www.iso.org/standard/75928.html
https://www.iso.org/standard/53943.html
https://www.iso.org/standard/53943.html
https://www.iso.org/standard/66069.html
https://www.iso.org/standard/66069.html
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/68042.html
https://www.iso.org/standard/71975.html
https://www.iso.org/standard/71975.html
https://www.iso.org/standard/75485.html
https://www.iso.org/standard/75485.html
https://www.iso.org/standard/69668.html
https://www.iso.org/standard/69668.html
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc2119
https://httpwg.org/specs/rfc7232.html
https://httpwg.org/specs/rfc7232.html

[RFC7233]
R. Fielding, Ed.; Y. Lafon, Ed.; J. Reschke, Ed.. Hypertext Transfer Protocol (HTTP/1.1): Range Requests. June
2014. Proposed Standard. URL: https://httpwg.org/specs/rfc7233.html

[RFC8446]
E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. August 2018. Proposed Standard. URL:
https://tools.ietf.org/html/rfc8446

[SCTE128-1]
ANSVISCTE 128-1: AVC Video Constraints for Cable TelevisionPart 1 - Coding. URL:
https://www.scte.org/SCTEDocs/Standards/ANSI_SCTE%20128-1%202018.pdf

[XLINK]
Steven DeRose; Eve Maler; David Orchard. XML Linking Language (XLink) Version 1.0. 27 June 2001. REC.
URL: https://www.w3.0rg/TR/xlink/

Informative References®

[3GPP26.116]
3GPP TS 26.116 (03/2016): Television (TV) over 3GPP services; Video Profiles..

[ATSC3]
ATSC Standard: A/300:2017 “ATSC3.0 System”. URL.: https://https://www.atsc.org/wp-
content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf

[EBU-TT]
EBU TECH 3350: "EBU-TT Subtitling format definition". URL: https://tech.ebu.ch/docs/tech/tech3350.pdf

[ECMASCRIPT]
ECMAScript Language Specification. URL: https://tc39.github.io/fecma262/

[MEDIA-SOURCE]
Matthew Wolenetz; et al. Media Source Extensions™. 17 November 2016. REC. URL:
https://mwww.w3.org/TR/media-source/

[SCTE214-1]
ANSISCTE 214-1 2016: MPEG DASH for IP-Based Cable Services Part 1: MPD Constraints and Extensions.
2016. URL: http://scte.org/SCTEDocs/Standards/ANS|_SCTE %20214-1%202016.pdf

[SMPTE2052-1-2013]
SMPTE ST 2052-1:2013 "Timed Text Format (SMPTE-TT)". URL: https://doi.org/10.5594/SMPTE.ST2052-
1.2013

[SMPTE2052-10]
SMPTE 2025-10: Conversion from CEA-608 Data to SMPTE-TT. URL:
https://www.smpte.org/sites/default/files/RP2052-10-2013.pdf

[SMPTE2052-11]
Conversion from CEA-708 Caption Data to SMPTE-TT. URL: https://www.smpte.org/sites/default/files/RP2052-
11-2013.pdf

[TTML-IMSC1.1]
Pierre-Anthony Lemieux. TTML Profiles for Internet Media Subtitles and Captions 1.1. 8 November 2018. REC.
URL: https://www.w3.org/TR/ttml-imsc1.1/

[TTML2]
Glenn Adams; Cyril Concolato. Timed Text Markup Language 2 (TTML2). 8 November 2018. REC. URL:
https://www.w3.org/TR/ttml2/

Issues Index:

ISSUE 1 Need to add a paragraph on interoperability on baseline, if we have any <

ISSUE 2 We could benefit from some detailed examples here, especially as clock sync is such a critical
element of live services. <

ISSUE 3 What about period connectivity? #238

ISSUE 4 Update to match [MPEGDASH] 4th edition. <

ISSUE 5 We need to clarify how to determine the right value for SAP_type. #235 <

https://httpwg.org/specs/rfc7233.html
https://httpwg.org/specs/rfc7233.html
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://www.scte.org/SCTEDocs/Standards/ANSI_SCTE 128-1 2018.pdf
https://www.scte.org/SCTEDocs/Standards/ANSI_SCTE 128-1 2018.pdf
https://www.w3.org/TR/xlink/
https://www.w3.org/TR/xlink/
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://https//www.atsc.org/wp-content/uploads/2017/10/A300-2017-ATSC-3-System-Standard-1.pdf
https://tech.ebu.ch/docs/tech/tech3350.pdf
https://tech.ebu.ch/docs/tech/tech3350.pdf
https://tc39.github.io/ecma262/
https://tc39.github.io/ecma262/
https://www.w3.org/TR/media-source/
https://www.w3.org/TR/media-source/
http://scte.org/SCTEDocs/Standards/ANSI_SCTE 214-1 2016.pdf
http://scte.org/SCTEDocs/Standards/ANSI_SCTE 214-1 2016.pdf
https://doi.org/10.5594/SMPTE.ST2052-1.2013
https://doi.org/10.5594/SMPTE.ST2052-1.2013
https://www.smpte.org/sites/default/files/RP2052-10-2013.pdf
https://www.smpte.org/sites/default/files/RP2052-10-2013.pdf
https://www.smpte.org/sites/default/files/RP2052-11-2013.pdf
https://www.smpte.org/sites/default/files/RP2052-11-2013.pdf
https://www.w3.org/TR/ttml-imsc1.1/
https://www.w3.org/TR/ttml-imsc1.1/
https://www.w3.org/TR/ttml2/
https://www.w3.org/TR/ttml2/
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/238
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

ISSUE 6 Once we have a specific @earliestPresentationTime proposal submitted to MPEG we need to
update this section to match. See #245. This is now done in [MPEGDASH] 4th edition - need to synchronize this
text. <

ISSUE 7 What exactly is metadata @codecs supposed to be? https://github.com/Dash-Industry-Forum/DASH-
IF-IOP/issues/290 <

ISSUE 8 Anillustration here would be very useful. <

ISSUE 9 https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/284 <

ISSUE 10 Why is the above a SHOULD? If it matters enough to signal, we should make it SHALL?
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/286 <!

ISSUE 11 This chapter already includes changes from #274 <

ISSUE 12 https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/333 <

ISSUE 13 What do relative BaseURLs do? Do they just incrementally build up the URL? Or are they ignored?
This algorithm leaves it unclear, only referencing absolute BaseURLs. We should make it explicit. <

ISSUE 14 The text here is technically correct but could benefit from being reworded in a simpler and more
understandable way. If anyone finds themselves with the time, an extra pass over this would be helpful. <

ISSUE 15 We need to clarify how to determine the right value for startsWithSAP. #235 4

ISSUE 16 Add a reference here to help readers understand what are "IDS-like SAPs (i.e. SAPs of type 1 or
2y,

ISSUE 17 Allowing Representation@codecs to be absent might make it more difficult to make bitstream-
switching-oblivious clients. If we require Representation@codecs to always be present, client developer life could
be made simpler. <

ISSUE 18 What s the above talking about? <

ISSUE 19 This section could use another pass to make it easier to read. <

ISSUE 20 How do leap seconds tie into this? See #161 <

ISSUE 21 https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/274 <

ISSUE 22 insert reference to encryption. <

ISSUE 23 This and everything below needs to be updated to conform to timing model <

ISSUE 24 Needs proper Bikeshed formatting and references <

ISSUE 25 Check and align references in original text. <!

ISSUE 26 Is there something that goes into more depth about 404s? These statements need a better home. <

ISSUE 27 Needs to be checked for conformance with timing model. <

ISSUE 28 Needs proper Bikeshed formatting and referencing <

ISSUE 29 Needs deduplication of DASH concepts that are re-defined here. <

https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/245
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/274
https://github.com/Dash-Industry-Forum/DASH-IF-IOP/issues/235

1

ISSUE 30 What are "extensions"? Move this to features/constraints chapters? <

ISSUE 31 Where does UHD fit? Why is itin a separate chapter? We should unify. <!

ISSUE 32 What s the correct scoping for the above requirement? Is the composition time requirement specific
to H.264/H.265? Or does it apply to all bitstream switching video? Or does it apply to all bitstream switching, not
only video? <

ISSUE 33 What does the above requirement actually mean - what does an implementation have to do?
Unclear right now. <!

ISSUE 34 [TU-T T.35 referenced above seems unrelated to the topic. What is the correct reference? <

ISSUE 35 Is the payload_type sentence meant to be a requirement or a description of the referenced spec or
what is the utility of this statementin IOP? <

ISSUE 36 There is a bunch of stuff below with no obvious connection to UHD. Should this not also be in the
non-UHD HEVC chapter? <

ISSUE 37 Clients in browsers must assume what the CDM support as there is no standardized API for probing
the platform for knowning which Common Encryption proteciton scheme is supported. A bug is open on W3C
EME and a pull request exists here for the ISOBMFF file format bytestream and a proposal is open for probing
the platform on the encryption mode supported. <!

ISSUE 38 In this context, it is possible that the several quality levels are available under the same license right.
Add text explaining why a shall is the way to do. <!

ISSUE 39 This seems like an unlikely problem in real client implementations. Do we know of clients that actualy
exhibit the problematic behavior? Look at EME and define if this is still a problem. Take advantage of the
meeting in May with W3C <

ISSUE 40 To be reviewed in light of CMAF and segment/chunk and low latency. <

ISSUE 41 For key hierarchy, add a sentence explaining that mixing DRM systems is possible with system
constraints. <

ISSUE 42 To be completed. Look at encryption: Key available for license server “early” for been able to
generate licenses (root or leaf licenses). Avoid the license server been on the critical path. Encourage license
persistence in the client. <!

ISSUE 43 Merge Annex B from 4.3 to live services chapter (if not already duplicated). <

ISSUE 44 Where is this used? Why is it an annex? Consider restructuring to improve usefulness. <

ISSUE 45 Where is this used? Why is it an annex? Consider restructuring to improve usefulness. <

ISSUE 46 Where is this used? Why is it an annex? Consider restructuring to improve usefulness. <

ISSUE 47 Where is this used? Why is it an annex? Consider restructuring to improve usefulness. <

ISSUE 48 Where is this used? Why is it an annex? Consider restructuring to improve usefulness. <

Loading [MathJax]/extensions/tex2jax.js

https://github.com/w3c/encrypted-media/pull/392

	Guidelines for Implementation: DASH-IF Interoperability Points
	Living Document, 25 September 2019
	Table of Contents
	1. Purpose
	2. Interpretation
	3. Disclaimer
	4. DASH and related standards
	4.1. Relationship to the previous versions of this document
	4.2. Structure of a DASH presentation

	5. Interoperability requirements
	5.1. CMAF and ISO BMFF Requirements
	5.2. Timing model
	5.2.1. Conformance requirements
	5.2.2. MPD Timeline
	5.2.3. Periods
	5.2.4. Representations
	5.2.5. Sample timeline
	5.2.6. Clock drift is forbidden
	5.2.7. Media segments
	5.2.8. Period connectivity
	5.2.9. Dynamic MPDs
	5.2.10. Timing of stand-alone IMSC1 and WebVTT text files
	5.2.11. Forbidden techniques
	5.2.12. Examples

	5.3. Segment addressing modes
	5.3.1. Indexed addressing
	5.3.2. Structure of the index segment
	5.3.3. Explicit addressing
	5.3.4. Simple addressing

	5.4. Adaptation set contents
	5.5. Adaptation set types
	5.6. Video adaptation set constraints
	5.7. Audio adaptation set constraints
	5.8. Text adaptation set constraints
	5.9. Accessing resources over HTTP
	5.9.1. MPD URL resolution
	5.9.2. Segment URL resolution
	5.9.3. Conditional MPD downloads
	5.9.4. Expanding URL template variables

	5.10. Minimum buffer time signaling
	5.11. Large timescales and time values
	5.12. MPD size
	5.13. Representing durations in XML

	6. Commonly used features
	6.1. Seamless switching
	6.2. Preview thumbnails for seeking and navigation
	6.3. Trick mode
	6.4. Bitstream switching
	6.5. Switching across adaptation sets
	6.6. XLink
	6.7. Update signaling via in-band events
	6.8. Specifying initial position in presentation URL

	7. Content annotation and selection
	7.1. Annotations for content selection
	7.2. Content model
	7.2.1. Signaling alternative content
	7.2.2. Signaling associated content

	7.3. Client processing reference model

	8. On-demand services
	8.1. Surviving transforming boxes and other adaptation middleboxes

	9. Live services
	9.1. Selecting the time shift buffer size
	9.2. Selecting the suggested presentation delay
	9.3. Selecting the media segment duration
	9.4. Safety margins in availability timing
	9.5. Selecting the minimum update period
	9.6. Robust and seamless period transitions
	9.7. Determining the live edge
	9.8. Trick mode for live services
	9.9. DVB-DASH alignment
	9.10. Converting a live service to an on-demand service
	9.11. Reliable and consistent-delay live service
	9.11.1. Consistent latency
	9.11.2. Unanticipated new periods
	9.11.3. Media segment duration variations
	9.11.4. Losses and operational failures
	9.11.5. Minimizing MPD updates
	9.11.6. Proposed service configuration and MPD generation logic

	10. Ad insertion
	10.1. Remote elements
	10.2. Periods
	10.3. Segment availability
	10.4. Seamless transition
	10.5. Period labeling
	10.6. DASH events
	10.7. MPD updates
	10.8. Session information
	10.9. Tracking and reporting
	10.10. Ad insertion architectures
	10.11. Server-based architecture
	10.11.1. Implementation basics
	10.11.2. Remote period elements
	10.11.3. Timing and dereferencing
	10.11.4. Asset identifiers
	10.11.5. MPD updates
	10.11.6. MPD events
	10.11.7. Workflows
	10.11.8. Linear workflow
	10.11.9. On demand workflow
	10.11.10. Examples
	10.11.11. Use of query parameters

	10.12. App-based architecture
	10.12.1. Implementation basics
	10.12.2. SCTE 35 events
	10.12.3. Asset identifiers
	10.12.4. Linear workflow
	10.12.5. On demand workflow

	10.13. AssetIdentifier extensions
	10.14. Remote period extensions
	10.15. User-defined event extensions
	10.15.1. Cue message
	10.15.2. Reporting
	10.15.3. Ad insertion event streams

	11. Media coding technologies
	11.1. H.264 (AVC)
	11.2. H.265 (HEVC)
	11.3. Decoder configuration with H.264 and H.265
	11.4. Bitstream switching with H.264 and H.265
	11.5. Thumbnail images
	11.6. HE-AACv2 audio (stereo)
	11.7. HE-AACv2 audio (multichannel)
	11.8. CEA-608/708 Digital Television (DTV) Closed Captioning
	11.9. Timed Text (IMSC1)
	11.10. Enhanced AC-3 (Dolby Digital Plus)
	11.11. Dolby TrueHD
	11.12. AC-4
	11.13. DTS-HD
	11.14. MPEG Surround
	11.15. MPEG-H 3D Audio
	11.16. MPEG-D Unified Speech and Audio Coding
	11.17. UHD HEVC 4K
	11.17.1. TS 103.433 HDR dynamic metadata
	11.17.2. HEVC UHD compatibility aspects

	11.18. HEVC HDR PQ10
	11.18.1. HEVC PQ10 HDR dynamic metadata
	11.18.2. SMPTE 2094-10 HDR dynamic metadata
	11.18.3. SMPTE 2094-40 HDR dynamic metadata

	11.19. UHD Dual-Stream (Dolby Vision)
	11.19.1. Requirements for enhancement layer

	11.20. VP9
	11.20.1. HD
	11.20.2. UHD
	11.20.3. HDR

	12. Content protection and security
	12.1. Introduction
	12.2. HTTPS and DASH
	12.3. Content Encryption
	12.4. ISOBMFF Support for Common Encryption and DRM
	12.4.1. ISOBMFF Structure Overview
	12.4.2. ISOBMFF Content Protection Constraints

	12.5. DASH MPD Support for Common Encryption and DRM
	12.5.1. MPD Structure Overview
	12.5.2. MPD Content Protections Constraints

	12.6. Mix ISOBMFF and MPD Content Protections Constraints
	12.7. Client Interactions with DRM Systems
	12.8. Additional Constraints for Specific Use Cases
	12.8.1. Periodic Re-Authorization
	12.8.2. Low Latency
	12.8.3. Use of W3C Clear Key with DASH
	12.8.4. License Acquisition URL XML Element Laurl

	13. Annex B
	14. Annex: Dolby Vision streams within ISO BMFF
	15. Annex: Signaling Dolby Vision profiles and levels
	16. Annex: Display management message
	17. Annex: Composing metadata message
	18. Annex: Sample Dual-layer MPD
	19. Externally defined terms
	Conformance
	Index
	Terms defined by this specification

	References
	Normative References
	Informative References

	Issues Index

